Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 667: 403-413, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38640659

RESUMO

In this study, nitrogen-doped carbon dots (N-CDs) were facilely fabricated by one-pot hydrothermal method with levulinic acid and triethanolamine. A fluorescent sensor array was established for identifying azo compounds including Sudan Orange G (SOG), p-diaminoazobenzene, p-aminoazobenzene, azobenzene and quantitative detection of SOG. Experimental results revealed that azo compounds could quench the fluorescent intensity of N-CDs. Owing to various azo compounds showing different affinities to N-CDs, the sensor array exhibited different fluorescence quenching changes, which were further analyzed with principal component analysis to discriminate azo compounds. The sensor array was able to differentiate and recognize diverse concentrations of azo compounds from 0.25 to 2 mg/L. Simultaneously, a variety of factors affecting the detection of SOG were optimized. Under the optimized conditions, the sensor showed excellent stability and sensitivity. The sensor possessed marvelous linearity in the range of 0.1-1 mg/L and 1-4 mg/L and the detection limit was 27.82 µg/L. Spiked recoveries of 90.8-98.2 % were attained at spiked levels of 0.2 mg/L and 1 mg/L, demonstrating that the constructed fluorescence sensor was dependable and feasible for sensing SOG in environmental water samples.

2.
Talanta ; 272: 125749, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359723

RESUMO

In this work, a sensitive fluorescent sensor toward p-nitrophenol (4-NP) integrating magnetic molecularly imprinted materials and carbon dots (CDs) was proposed. Magnetic material and CDs derived from K3 [Fe(CN)6] and glucose were simultaneously obtained through simple one-step hydrothermal process. Introducing of molecularly imprinted materials based magnetic solid phase extraction (MSPE) endowed the constructed fluorescent sensor with higher sensitivity and selectivity. The significant factors affecting the sensitivity of the sensor toward 4-NP were optimized. Good linearity was obtained between fluorescent intensity of CDs and different concentration of 4-NP from 0.08 to 62.5 µg L-1. The sensitivity of constructed sensor was very low with detection limit of 0.02 µg L-1. Reliable applicability was also proved by the well-pleasing recoveries of 94.2-97.8% with different spiked concentrations of 4-NP in real environmental waters.

3.
Plant Sci ; 325: 111489, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36216298

RESUMO

Citrus grandis 'Tomentosa' (CGT) (Huajuhong, HJH) is a widely used medicinal plant, which is mainly produced in Guangdong and Guangxi provinces of South China. Particularly, HJH from Huazhou (HZ) county of Guangdong province has been well-regarded as the best national product for geo-herbalism. But the reasons for geo-herbalism property in HJH from HZ county remains a mystery. Therefore, a multi-omics approach was applied to identify the nature of the geo-herbalism in CGT from three different regions. The comprehensive screening of differential metabolites revealed that the Nobiletin content was significantly different in HZ region compared to other regions, and could be employed as a key indicator to determine the geo-herbalism. Furthermore, the high-quality genome (N50 of 9.12 Mb), coupled with genomics and transcriptomics analyses indicated that CGT and Citrus grandis are closely related, with a predicted divergence time of 19.1 million years ago (MYA), and no recent WGD occurred in the CGT, and the bioactive ingredients of CGT were more abundant than that of Citrus grandis. Interestingly, Nobiletin (Polymethoxyflavones) content was identified as a potential indicator of geo-herbalism, and O-methyltransferase (OMT) genes are involved in the synthesis of Polymethoxyflavones. Further multi-omics analysis led to the identification of a novel OMT gene (CtgOMT1) whose transient overexpression displayed significantly higher Nobiletin content, suggesting that CtgOMT1 was involved in the synthesis of Nobiletin. Overall, our findings provide new data resources for geo-herbalism evaluation, germplasm conservation and insights into Nobiletin biosynthesis pathways for the medicinal plant C. grandis 'Tomentosa'.


Assuntos
Citrus , Plantas Medicinais , Citrus/genética , Medicina Herbária , China , Plantas Medicinais/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa