Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 155(2): 462-77, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24120142

RESUMO

We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Neoplasias Encefálicas/metabolismo , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Glioblastoma/metabolismo , Humanos , Masculino , Mutação , Proteoma/análise , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 120(21): e2209639120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186844

RESUMO

Renal medullary carcinoma (RMC) is an aggressive kidney cancer that almost exclusively develops in individuals with sickle cell trait (SCT) and is always characterized by loss of the tumor suppressor SMARCB1. Because renal ischemia induced by red blood cell sickling exacerbates chronic renal medullary hypoxia in vivo, we investigated whether the loss of SMARCB1 confers a survival advantage under the setting of SCT. Hypoxic stress, which naturally occurs within the renal medulla, is elevated under the setting of SCT. Our findings showed that hypoxia-induced SMARCB1 degradation protected renal cells from hypoxic stress. SMARCB1 wild-type renal tumors exhibited lower levels of SMARCB1 and more aggressive growth in mice harboring the SCT mutation in human hemoglobin A (HbA) than in control mice harboring wild-type human HbA. Consistent with established clinical observations, SMARCB1-null renal tumors were refractory to hypoxia-inducing therapeutic inhibition of angiogenesis. Further, reconstitution of SMARCB1 restored renal tumor sensitivity to hypoxic stress in vitro and in vivo. Together, our results demonstrate a physiological role for SMARCB1 degradation in response to hypoxic stress, connect the renal medullary hypoxia induced by SCT with an increased risk of SMARCB1-negative RMC, and shed light into the mechanisms mediating the resistance of SMARCB1-null renal tumors against angiogenesis inhibition therapies.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Traço Falciforme , Animais , Humanos , Camundongos , Carcinoma de Células Renais/patologia , Hipóxia/genética , Hipóxia/metabolismo , Rim/metabolismo , Neoplasias Renais/patologia , Traço Falciforme/genética , Traço Falciforme/metabolismo , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo
3.
Nature ; 542(7639): 119-123, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28099419

RESUMO

The genome of pancreatic ductal adenocarcinoma (PDAC) frequently contains deletions of tumour suppressor gene loci, most notably SMAD4, which is homozygously deleted in nearly one-third of cases. As loss of neighbouring housekeeping genes can confer collateral lethality, we sought to determine whether loss of the metabolic gene malic enzyme 2 (ME2) in the SMAD4 locus would create cancer-specific metabolic vulnerability upon targeting of its paralogous isoform ME3. The mitochondrial malic enzymes (ME2 and ME3) are oxidative decarboxylases that catalyse the conversion of malate to pyruvate and are essential for NADPH regeneration and reactive oxygen species homeostasis. Here we show that ME3 depletion selectively kills ME2-null PDAC cells in a manner consistent with an essential function for ME3 in ME2-null cancer cells. Mechanistically, integrated metabolomic and molecular investigation of cells deficient in mitochondrial malic enzymes revealed diminished NADPH production and consequent high levels of reactive oxygen species. These changes activate AMP activated protein kinase (AMPK), which in turn directly suppresses sterol regulatory element-binding protein 1 (SREBP1)-directed transcription of its direct targets including the BCAT2 branched-chain amino acid transaminase 2) gene. BCAT2 catalyses the transfer of the amino group from branched-chain amino acids to α-ketoglutarate (α-KG) thereby regenerating glutamate, which functions in part to support de novo nucleotide synthesis. Thus, mitochondrial malic enzyme deficiency, which results in impaired NADPH production, provides a prime 'collateral lethality' therapeutic strategy for the treatment of a substantial fraction of patients diagnosed with this intractable disease.


Assuntos
Carcinoma Ductal Pancreático/genética , Deleção de Genes , Malato Desidrogenase/deficiência , Neoplasias Pancreáticas/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Biocatálise , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/psicologia , Carcinoma Ductal Pancreático/terapia , Humanos , Ácidos Cetoglutáricos/metabolismo , Malato Desidrogenase/genética , Masculino , Camundongos , Antígenos de Histocompatibilidade Menor/biossíntese , Antígenos de Histocompatibilidade Menor/genética , Mitocôndrias/enzimologia , Mitocôndrias/patologia , NADP/biossíntese , NADP/metabolismo , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Proteínas da Gravidez/biossíntese , Proteínas da Gravidez/genética , Espécies Reativas de Oxigênio/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Transaminases/biossíntese , Transaminases/genética
4.
Nature ; 542(7641): 362-366, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28178232

RESUMO

Malignant neoplasms evolve in response to changes in oncogenic signalling. Cancer cell plasticity in response to evolutionary pressures is fundamental to tumour progression and the development of therapeutic resistance. Here we determine the molecular and cellular mechanisms of cancer cell plasticity in a conditional oncogenic Kras mouse model of pancreatic ductal adenocarcinoma (PDAC), a malignancy that displays considerable phenotypic diversity and morphological heterogeneity. In this model, stochastic extinction of oncogenic Kras signalling and emergence of Kras-independent escaper populations (cells that acquire oncogenic properties) are associated with de-differentiation and aggressive biological behaviour. Transcriptomic and functional analyses of Kras-independent escapers reveal the presence of Smarcb1-Myc-network-driven mesenchymal reprogramming and independence from MAPK signalling. A somatic mosaic model of PDAC, which allows time-restricted perturbation of cell fate, shows that depletion of Smarcb1 activates the Myc network, driving an anabolic switch that increases protein metabolism and adaptive activation of endoplasmic-reticulum-stress-induced survival pathways. Increased protein turnover renders mesenchymal sub-populations highly susceptible to pharmacological and genetic perturbation of the cellular proteostatic machinery and the IRE1-α-MKK4 arm of the endoplasmic-reticulum-stress-response pathway. Specifically, combination regimens that impair the unfolded protein responses block the emergence of aggressive mesenchymal subpopulations in mouse and patient-derived PDAC models. These molecular and biological insights inform a potential therapeutic strategy for targeting aggressive mesenchymal features of PDAC.


Assuntos
Mesoderma/patologia , Neoplasias Pancreáticas/patologia , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Estresse do Retículo Endoplasmático/genética , Feminino , Genes myc , Genes ras , Humanos , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Mesoderma/metabolismo , Camundongos , Mosaicismo , Proteína Oncogênica p55(v-myc)/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Proteólise , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína SMARCB1/deficiência , Proteína SMARCB1/metabolismo , Transcriptoma/genética , Gencitabina
5.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298264

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is still one of the deadliest cancers in oncology because of its increasing incidence and poor survival rate. More than 90% of PDAC patients are KRAS mutated (KRASmu), with KRASG12D and KRASG12V being the most common mutations. Despite this critical role, its characteristics have made direct targeting of the RAS protein extremely difficult. KRAS regulates development, cell growth, epigenetically dysregulated differentiation, and survival in PDAC through activation of key downstream pathways, such as MAPK-ERK and PI3K-AKT-mammalian target of rapamycin (mTOR) signaling, in a KRAS-dependent manner. KRASmu induces the occurrence of acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) and leads to an immunosuppressive tumor microenvironment (TME). In this context, the oncogenic mutation of KRAS induces an epigenetic program that leads to the initiation of PDAC. Several studies have identified multiple direct and indirect inhibitors of KRAS signaling. Therefore, KRAS dependency is so essential in KRASmu PDAC that cancer cells have secured several compensatory escape mechanisms to counteract the efficacy of KRAS inhibitors, such as activation of MEK/ERK signaling or YAP1 upregulation. This review will provide insights into KRAS dependency in PDAC and analyze recent data on inhibitors of KRAS signaling, focusing on how cancer cells establish compensatory escape mechanisms.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
6.
Gastroenterology ; 161(1): 196-210, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33745946

RESUMO

BACKGROUND & AIMS: Understanding the mechanisms by which tumors adapt to therapy is critical for developing effective combination therapeutic approaches to improve clinical outcomes for patients with cancer. METHODS: To identify promising and clinically actionable targets for managing colorectal cancer (CRC), we conducted a patient-centered functional genomics platform that includes approximately 200 genes and paired this with a high-throughput drug screen that includes 262 compounds in four patient-derived xenografts (PDXs) from patients with CRC. RESULTS: Both screening methods identified exportin 1 (XPO1) inhibitors as drivers of DNA damage-induced lethality in CRC. Molecular characterization of the cellular response to XPO1 inhibition uncovered an adaptive mechanism that limited the duration of response in TP53-mutated, but not in TP53-wild-type CRC models. Comprehensive proteomic and transcriptomic characterization revealed that the ATM/ATR-CHK1/2 axes were selectively engaged in TP53-mutant CRC cells upon XPO1 inhibitor treatment and that this response was required for adapting to therapy and escaping cell death. Administration of KPT-8602, an XPO1 inhibitor, followed by AZD-6738, an ATR inhibitor, resulted in dramatic antitumor effects and prolonged survival in TP53-mutant models of CRC. CONCLUSIONS: Our findings anticipate tremendous therapeutic benefit and support the further evaluation of XPO1 inhibitors, especially in combination with DNA damage checkpoint inhibitors, to elicit an enduring clinical response in patients with CRC harboring TP53 mutations.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Biomarcadores Tumorais/genética , Neoplasias Colorretais/tratamento farmacológico , Carioferinas/antagonistas & inibidores , Mutação , Inibidores de Proteínas Quinases/administração & dosagem , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Bases de Dados Genéticas , Células HCT116 , Células HT29 , Humanos , Indóis/administração & dosagem , Carioferinas/metabolismo , Camundongos , Morfolinas/administração & dosagem , Piperazinas/administração & dosagem , Piridinas/administração & dosagem , Pirimidinas/administração & dosagem , Receptores Citoplasmáticos e Nucleares/metabolismo , Sulfonamidas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Exportina 1
7.
Nature ; 514(7524): 628-32, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25119024

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in western countries, with a median survival of 6 months and an extremely low percentage of long-term surviving patients. KRAS mutations are known to be a driver event of PDAC, but targeting mutant KRAS has proved challenging. Targeting oncogene-driven signalling pathways is a clinically validated approach for several devastating diseases. Still, despite marked tumour shrinkage, the frequency of relapse indicates that a fraction of tumour cells survives shut down of oncogenic signalling. Here we explore the role of mutant KRAS in PDAC maintenance using a recently developed inducible mouse model of mutated Kras (Kras(G12D), herein KRas) in a p53(LoxP/WT) background. We demonstrate that a subpopulation of dormant tumour cells surviving oncogene ablation (surviving cells) and responsible for tumour relapse has features of cancer stem cells and relies on oxidative phosphorylation for survival. Transcriptomic and metabolic analyses of surviving cells reveal prominent expression of genes governing mitochondrial function, autophagy and lysosome activity, as well as a strong reliance on mitochondrial respiration and a decreased dependence on glycolysis for cellular energetics. Accordingly, surviving cells show high sensitivity to oxidative phosphorylation inhibitors, which can inhibit tumour recurrence. Our integrated analyses illuminate a therapeutic strategy of combined targeting of the KRAS pathway and mitochondrial respiration to manage pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Mitocôndrias/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Autofagia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Genes p53/genética , Glicólise , Lisossomos/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mutação/genética , Recidiva Local de Neoplasia/prevenção & controle , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Recidiva , Transdução de Sinais , Neoplasias Pancreáticas
8.
Genes Dev ; 26(8): 756-84, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22508724

RESUMO

Glioblastoma is both the most common and lethal primary malignant brain tumor. Extensive multiplatform genomic characterization has provided a higher-resolution picture of the molecular alterations underlying this disease. These studies provide the emerging view that "glioblastoma" represents several histologically similar yet molecularly heterogeneous diseases, which influences taxonomic classification systems, prognosis, and therapeutic decisions.


Assuntos
Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/genética , Glioblastoma/classificação , Glioblastoma/genética , Neoplasias Encefálicas/patologia , Perfilação da Expressão Gênica , Genes Supressores de Tumor , Genômica , Glioblastoma/patologia , Humanos , Neovascularização Patológica/genética , Transcrição Gênica
9.
Nature ; 488(7411): 337-42, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22895339

RESUMO

Inactivation of tumour-suppressor genes by homozygous deletion is a prototypic event in the cancer genome, yet such deletions often encompass neighbouring genes. We propose that homozygous deletions in such passenger genes can expose cancer-specific therapeutic vulnerabilities when the collaterally deleted gene is a member of a functionally redundant family of genes carrying out an essential function. The glycolytic gene enolase 1 (ENO1) in the 1p36 locus is deleted in glioblastoma (GBM), which is tolerated by the expression of ENO2. Here we show that short-hairpin-RNA-mediated silencing of ENO2 selectively inhibits growth, survival and the tumorigenic potential of ENO1-deleted GBM cells, and that the enolase inhibitor phosphonoacetohydroxamate is selectively toxic to ENO1-deleted GBM cells relative to ENO1-intact GBM cells or normal astrocytes. The principle of collateral vulnerability should be applicable to other passenger-deleted genes encoding functionally redundant essential activities and provide an effective treatment strategy for cancers containing such genomic events.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Genes Essenciais/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Terapia de Alvo Molecular/métodos , Deleção de Sequência/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/deficiência , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Cromossomos Humanos Par 1/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Inibidores Enzimáticos , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Supressores de Tumor , Glioblastoma/patologia , Homozigoto , Humanos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Camundongos , Transplante de Neoplasias , Ácido Fosfonoacéticos/análogos & derivados , Ácido Fosfonoacéticos/farmacologia , Ácido Fosfonoacéticos/uso terapêutico , Fosfopiruvato Hidratase/antagonistas & inibidores , Fosfopiruvato Hidratase/deficiência , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , RNA Interferente Pequeno/genética , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
11.
Sci Adv ; 10(11): eadd9342, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478609

RESUMO

Tumors represent ecosystems where subclones compete during tumor growth. While extensively investigated, a comprehensive picture of the interplay of clonal lineages during dissemination is still lacking. Using patient-derived pancreatic cancer cells, we created orthotopically implanted clonal replica tumors to trace clonal dynamics of unperturbed tumor expansion and dissemination. This model revealed the multifaceted nature of tumor growth, with rapid changes in clonal fitness leading to continuous reshuffling of tumor architecture and alternating clonal dominance as a distinct feature of cancer growth. Regarding dissemination, a large fraction of tumor lineages could be found at secondary sites each having distinctive organ growth patterns as well as numerous undescribed behaviors such as abortive colonization. Paired analysis of primary and secondary sites revealed fitness as major contributor to dissemination. From the analysis of pro- and nonmetastatic isogenic subclones, we identified a transcriptomic signature able to identify metastatic cells in human tumors and predict patients' survival.


Assuntos
Ecossistema , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Perfilação da Expressão Gênica , Transcriptoma
12.
Hematol Oncol Clin North Am ; 37(5): 977-992, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37244822

RESUMO

The term variant histology renal cell carcinomas (vhRCCs), also known as non-clear cell RCCs, refers to a diverse group of malignancies with distinct biologic and therapeutic considerations. The management of vhRCC subtypes is often based on extrapolating results from the more common clear cell RCC studies or basket trials that are not specific to each histology. The unique management of each vhRCC subtype necessitates accurate pathologic diagnosis and dedicated research efforts. Herein, we discuss tailored recommendations for each vhRCC histology informed by ongoing research and clinical experience.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/terapia , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/patologia , Neoplasias Renais/terapia , Neoplasias Renais/diagnóstico , Neoplasias Renais/patologia , Biologia
13.
Curr Oncol ; 30(3): 3355-3365, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36975468

RESUMO

We present, to our knowledge, the first reported case of germline neurofibromatosis Type 2 (NF2) associated with renal cell carcinoma unclassified with medullary phenotype (RCCU-MP) with somatic loss by immunohistochemistry of the SMARCB1 tumor suppressor gene located centromeric to NF2 on chromosome 22q. Our patient is a 15-year-old with germline neurofibromatosis Type 2 (NF2) confirmed by pathogenic mutation of c.-854-??46+??deletion. Her NF2 history is positive for a right optic nerve sheath meningioma, CNIII schwannoma requiring radiation therapy and post gross total resection of right frontotemporal anaplastic meningioma followed by radiation. At age 15 she developed new onset weight loss and abdominal pain due to RCCU-MP. Hemoglobin electrophoresis was negative for sickle hemoglobinopathy. Chemotherapy (cisplatin, gemcitabine and paclitaxel) was initiated followed by radical resection. Given the unique renal pathology of a high grade malignancy with loss of SMARCB1 expression via immunohistochemistry, and history of meningioma with MLH1 loss of expression and retained expression of PMS2, MSH2 and MSH6, further germline genetic testing was sent for SMARCB1 and mismatch repair syndromes. Germline testing was negative for mutation in SMARCB1. Therefore, this is the first reported case of RCCU-MP associated with germline NF2 mutation. This suggests the importance of closer surveillance in the adolescent and young adult population with NF2 with any suspicious findings of malignancy outside of the usual scope of practice with NF2.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Meníngeas , Meningioma , Neurofibromatose 2 , Feminino , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Meníngeas/genética , Meningioma/genética , Neurofibromatose 2/complicações , Neurofibromatose 2/genética , Fenótipo
14.
Eur Urol Oncol ; 6(2): 228-232, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34789422

RESUMO

Deficiency of MTAP (MTAPdef) mainly occurs because of homozygous loss of chromosome 9p21, which is the most common copy-number loss in metastatic urothelial cancer (mUC). We characterized the clinical and genomic features of MTAPdef mUC in 193 patients treated at MD Anderson Cancer Center (MDACC) and 298 patients from the phase 2 IMvigor210 trial, which investigated atezolizumab in cisplatin-ineligible and platinum-refractory disease. In the MDACC cohort, visceral metastases were significantly more common for MTAPdef (n = 48) than for MTAP-proficient (MTAPprof; n = 145) patients (75% vs 55.2%; p = 0.02). MTAPdef was associated with poor prognosis (median overall survival [mOS] 12.3 vs 20.2 mo; p = 0.007) with an adjusted hazard ratio of 1.93 (95% confidence interval 1.35-2.98). Similarly, IMvigor210 patients with MTAPlo (n = 29) had a higher incidence of visceral metastases than those with MTAPhi tumors (n = 269; 86.2% vs 72.5%; p = 0.021) and worse prognosis (mOS 8.0 vs 11.3 mo; p = 0.042). Hyperplasia-associated genes were more frequently mutated in MTAPdef tumors (FGFR3: 31% vs 8%; PI3KCA: 31% vs 19%), while alterations in dysplasia-associated genes were less common in MTAPdef tumors (TP53: 41% vs 67%; RB1: 0% vs 16%). Our findings support a distinct biology in MTAPdef mUC that is associated with early visceral disease and worse prognosis. PATIENT SUMMARY: We investigated the outcomes for patients with the most common gene loss (MTAP gene) in metastatic cancer of the urinary tract. We found that this loss correlates with worse prognosis and a higher risk of metastasis in internal organs. There seems to be distinct tumor biology for urinary tract cancer with MTAP gene loss and this could be a potential target for treatment.


Assuntos
Carcinoma de Células de Transição , Humanos , Prognóstico , Carcinoma de Células de Transição/tratamento farmacológico , Genômica , Cisplatino/uso terapêutico , Modelos de Riscos Proporcionais
15.
Clin Transl Med ; 13(5): e1267, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37226898

RESUMO

BACKGROUND: Renal medullary carcinoma (RMC) is a highly aggressive cancer in need of new therapeutic strategies. The neddylation pathway can protect cells from DNA damage induced by the platinum-based chemotherapy used in RMC. We investigated if neddylation inhibition with pevonedistat will synergistically enhance antitumour effects of platinum-based chemotherapy in RMC. METHODS: We evaluated the IC50 concentrations of the neddylation-activating enzyme inhibitor pevonedistat in vitro in RMC cell lines. Bliss synergy scores were calculated using growth inhibition assays following treatment with varying concentrations of pevonedistat and carboplatin. Protein expression was assessed by western blot and immunofluorescence assays. The efficacy of pevonedistat alone or in combination with platinum-based chemotherapy was evaluated in vivo in platinum-naïve and platinum-experienced patient-derived xenograft (PDX) models of RMC. RESULTS: The RMC cell lines demonstrated IC50 concentrations of pevonedistat below the maximum tolerated dose in humans. When combined with carboplatin, pevonedistat demonstrated a significant in vitro synergistic effect. Treatment with carboplatin alone increased nuclear ERCC1 levels used to repair the interstrand crosslinks induced by platinum salts. Conversely, the addition of pevonedistat to carboplatin led to p53 upregulation resulting in FANCD2 suppression and reduced nuclear ERCC1 levels. The addition of pevonedistat to platinum-based chemotherapy significantly inhibited tumour growth in both platinum-naïve and platinum-experienced PDX models of RMC (p < .01). CONCLUSIONS: Our results suggest that pevonedistat synergises with carboplatin to inhibit RMC cell and tumour growth through inhibition of DNA damage repair. These findings support the development of a clinical trial combining pevonedistat with platinum-based chemotherapy for RMC.


Assuntos
Carcinoma Medular , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico
16.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37786705

RESUMO

Mesenchymal plasticity has been extensively described in advanced and metastatic epithelial cancers; however, its functional role in malignant progression, metastatic dissemination and therapy response is controversial. More importantly, the role of epithelial mesenchymal transition (EMT) and cell plasticity in tumor heterogeneity, clonal selection and clonal evolution is poorly understood. Functionally, our work clarifies the contribution of EMT to malignant progression and metastasis in pancreatic cancer. We leveraged ad hoc somatic mosaic genome engineering, lineage tracing and ablation technologies and dynamic genetic reporters to trace and ablate tumor-specific lineages along the phenotypic spectrum of epithelial to mesenchymal plasticity. The experimental evidences clarify the essential contribution of mesenchymal lineages to pancreatic cancer evolution and metastatic dissemination. Spatial genomic analysis combined with single cell transcriptomic and epigenomic profiling of epithelial and mesenchymal lineages reveals that EMT promotes with the emergence of chromosomal instability (CIN). Specifically tumor lineages with mesenchymal features display highly conserved patterns of genomic evolution including complex structural genomic rearrangements and chromotriptic events. Genetic ablation of mesenchymal lineages robustly abolished these mutational processes and evolutionary patterns, as confirmed by cross species analysis of pancreatic and other human epithelial cancers. Mechanistically, we discovered that malignant cells with mesenchymal features display increased chromatin accessibility, particularly in the pericentromeric and centromeric regions, which in turn results in delayed mitosis and catastrophic cell division. Therefore, EMT favors the emergence of high-fitness tumor cells, strongly supporting the concept of a cell-state, lineage-restricted patterns of evolution, where cancer cell sub-clonal speciation is propagated to progenies only through restricted functional compartments. Restraining those evolutionary routes through genetic ablation of clones capable of mesenchymal plasticity and extinction of the derived lineages completely abrogates the malignant potential of one of the most aggressive form of human cancer.

17.
Nat Commun ; 14(1): 2194, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069167

RESUMO

Mitochondria are hubs where bioenergetics, redox homeostasis, and anabolic metabolism pathways integrate through a tightly coordinated flux of metabolites. The contributions of mitochondrial metabolism to tumor growth and therapy resistance are evident, but drugs targeting mitochondrial metabolism have repeatedly failed in the clinic. Our study in pancreatic ductal adenocarcinoma (PDAC) finds that cellular and mitochondrial lipid composition influence cancer cell sensitivity to pharmacological inhibition of electron transport chain complex I. Profiling of patient-derived PDAC models revealed that monounsaturated fatty acids (MUFAs) and MUFA-linked ether phospholipids play a critical role in maintaining ROS homeostasis. We show that ether phospholipids support mitochondrial supercomplex assembly and ROS production; accordingly, blocking de novo ether phospholipid biosynthesis sensitized PDAC cells to complex I inhibition by inducing mitochondrial ROS and lipid peroxidation. These data identify ether phospholipids as a regulator of mitochondrial redox control that contributes to the sensitivity of PDAC cells to complex I inhibition.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Éteres Fosfolipídicos/metabolismo , Mitocôndrias/metabolismo , Fosfolipídeos/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Homeostase
18.
Nat Cancer ; 4(7): 984-1000, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37365326

RESUMO

Molecular routes to metastatic dissemination are critical determinants of aggressive cancers. Through in vivo CRISPR-Cas9 genome editing, we generated somatic mosaic genetically engineered models that faithfully recapitulate metastatic renal tumors. Disruption of 9p21 locus is an evolutionary driver to systemic disease through the rapid acquisition of complex karyotypes in cancer cells. Cross-species analysis revealed that recurrent patterns of copy number variations, including 21q loss and dysregulation of the interferon pathway, are major drivers of metastatic potential. In vitro and in vivo genomic engineering, leveraging loss-of-function studies, along with a model of partial trisomy of chromosome 21q, demonstrated a dosage-dependent effect of the interferon receptor genes cluster as an adaptive mechanism to deleterious chromosomal instability in metastatic progression. This work provides critical knowledge on drivers of renal cell carcinoma progression and defines the primary role of interferon signaling in constraining the propagation of aneuploid clones in cancer evolution.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Variações do Número de Cópias de DNA/genética , Instabilidade Cromossômica/genética , Aneuploidia , Neoplasias Renais/genética
19.
Cancer Treat Res Commun ; 33: 100640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36174377

RESUMO

Dedifferentiation in renal cell carcinoma (RCC), either sarcomatoid or rhabdoid, is an infrequent event that may occur heterogeneously in the setting of any RCC histology and is associated with poor outcomes. Sarcomatoid dedifferentiation is associated with inferior survival with angiogenesis targeted therapy and infrequent responses to cytotoxic chemotherapy. However, immune checkpoint therapy has significantly improved outcomes for patients with sarcomatoid dedifferentiation. Biologically, sarcomatoid dedifferentiation has increased programmed death-ligand 1 (PD-L1) expression and an inflamed tumor microenvironment, in addition to other distinct molecular alterations. Less is known about rhabdoid dedifferentiation from either a clinical, biological, or therapeutic perspective. In this focused review, we will discuss the prognostic implications, outcomes with systemic therapy, and underlying biology in RCC with either sarcomatoid or rhabdoid dedifferentiation present.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Prognóstico , Microambiente Tumoral
20.
NPJ Precis Oncol ; 6(1): 21, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379887

RESUMO

Desmoplastic small round cell tumor (DSRCT) is a highly aggressive soft tissue sarcoma that is characterized by the EWSR1-WT1 fusion protein. Patients present with hundreds of tumor implants in their abdominal cavity at various sites. To determine the genetic relatedness among these sites, exome and RNA sequencing were performed on 22 DSRCT specimens from 14 patients, four of whom had specimens from various tissue sites. Multi-site tumors from individual DSRCT patients had a shared origin and were highly related. Other than the EWSR1-WT1 fusion, very few secondary cancer gene mutations were shared among the sites. Among these, ARID1A, was recurrently mutated, which corroborates findings by others in DSRCT patients. Knocking out ARID1A in JN-DSRCT cells using CRISPR/CAS9 resulted in significantly lower cell proliferation and increased drug sensitivity. The transcriptome data were integrated using network analysis and drug target database information to identify potential therapeutic opportunities in EWSR1-WT1-associated pathways, such as PI3K and mTOR pathways. Treatment of JN-DSRCT cells with the PI3K inhibitor alpelisib and mTOR inhibitor temsirolimus reduced cell proliferation. In addition, the low mutation burden was associated with an immune-cold state in DSRCT. Together, these data reveal multiple genomic and immune features of DSRCT and suggest therapeutic opportunities in patients.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa