Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(7): 102089, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35640720

RESUMO

Toxoplasma gondii is an intracellular parasite that generates amylopectin granules (AGs), a polysaccharide associated with bradyzoites that define chronic T. gondii infection. AGs are postulated to act as an essential energy storage molecule that enable bradyzoite persistence, transmission, and reactivation. Importantly, reactivation can result in the life-threatening symptoms of toxoplasmosis. T. gondii encodes glucan dikinase and glucan phosphatase enzymes that are homologous to the plant and animal enzymes involved in reversible glucan phosphorylation and which are required for efficient polysaccharide degradation and utilization. However, the structural determinants that regulate reversible glucan phosphorylation in T. gondii are unclear. Herein, we define key functional aspects of the T. gondii glucan phosphatase TgLaforin (TGME49_205290). We demonstrate that TgLaforin possesses an atypical split carbohydrate-binding-module domain. AlphaFold2 modeling combined with hydrogen-deuterium exchange mass spectrometry and differential scanning fluorimetry also demonstrate the unique structural dynamics of TgLaforin with regard to glucan binding. Moreover, we show that TgLaforin forms a dual specificity phosphatase domain-mediated dimer. Finally, the distinct properties of the glucan phosphatase catalytic domain were exploited to identify a small molecule inhibitor of TgLaforin catalytic activity. Together, these studies define a distinct mechanism of TgLaforin activity, opening up a new avenue of T. gondii bradyzoite biology as a therapeutic target.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Glucanos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Polissacarídeos/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/parasitologia
2.
J Neurochem ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37554056

RESUMO

Glycogen is a biologically essential macromolecule that is directly involved in multiple human diseases. While its primary role in carbohydrate storage and energy metabolism in the liver and muscle is well characterized, recent research has highlighted critical metabolic and non-metabolic roles for glycogen in the brain. In this review, the emerging roles of glycogen homeostasis in the healthy and diseased brain are discussed with a focus on advancing our understanding of the role of glycogen in the brain. Innovative technologies that have led to novel insights into glycogen functions are detailed. Key insights into how cellular localization impacts neuronal and glial function are discussed. Perturbed glycogen functions are observed in multiple disorders of the brain, including where it serves as a disease driver in the emerging category of neurological glycogen storage diseases (n-GSDs). n-GSDs include Lafora disease (LD), adult polyglucosan body disease (APBD), Cori disease, Glucose transporter type 1 deficiency syndrome (G1D), GSD0b, and late-onset Pompe disease (PD). They are neurogenetic disorders characterized by aberrant glycogen which results in devastating neurological and systemic symptoms. In the most severe cases, rapid neurodegeneration coupled with dementia results in death soon after diagnosis. Finally, we discuss current treatment strategies that are currently being developed and have the potential to be of great benefit to patients with n-GSD. Taken together, novel technologies and biological insights have resulted in a renaissance in brain glycogen that dramatically advanced our understanding of both biology and disease. Future studies are needed to expand our understanding and the multifaceted roles of glycogen and effectively apply these insights to human disease.

3.
J Neurochem ; 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37401737

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord. Glial cells, including astrocytes and microglia, have been shown to contribute to neurodegeneration in ALS, and metabolic dysfunction plays an important role in the progression of the disease. Glycogen is a soluble polymer of glucose found at low levels in the central nervous system that plays an important role in memory formation, synaptic plasticity, and the prevention of seizures. However, its accumulation in astrocytes and/or neurons is associated with pathological conditions and aging. Importantly, glycogen accumulation has been reported in the spinal cord of human ALS patients and mouse models. In the present work, using the SOD1G93A mouse model of ALS, we show that glycogen accumulates in the spinal cord and brainstem during symptomatic and end stages of the disease and that the accumulated glycogen is associated with reactive astrocytes. To study the contribution of glycogen to ALS progression, we generated SOD1G93A mice with reduced glycogen synthesis (SOD1G93A GShet mice). SOD1G93A GShet mice had a significantly longer life span than SOD1G93A mice and showed lower levels of the astrocytic pro-inflammatory cytokine Cxcl10, suggesting that the accumulation of glycogen is associated with an inflammatory response. Supporting this, inducing an increase in glycogen synthesis reduced life span in SOD1G93A mice. Altogether, these results suggest that glycogen in reactive astrocytes contributes to neurotoxicity and disease progression in ALS.

4.
Curr Opin Neurol ; 36(5): 464-473, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37639402

RESUMO

PURPOSE OF REVIEW: Pompe disease is a rare, inherited, devastating condition that causes progressive weakness, cardiomyopathy and neuromotor disease due to the accumulation of glycogen in striated and smooth muscle, as well as neurons. While enzyme replacement therapy has dramatically changed the outcome of patients with the disease, this strategy has several limitations. Gene therapy in Pompe disease constitutes an attractive approach due to the multisystem aspects of the disease and need to address the central nervous system manifestations. This review highlights the recent work in this field, including methods, progress, shortcomings, and future directions. RECENT FINDINGS: Recombinant adeno-associated virus (rAAV) and lentiviral vectors (LV) are well studied platforms for gene therapy in Pompe disease. These products can be further adapted for safe and efficient administration with concomitant immunosuppression, with the modification of specific receptors or codon optimization. rAAV has been studied in multiple clinical trials demonstrating safety and tolerability. SUMMARY: Gene therapy for the treatment of patients with Pompe disease is feasible and offers an opportunity to fully correct the principal pathology leading to cellular glycogen accumulation. Further work is needed to overcome the limitations related to vector production, immunologic reactions and redosing.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Humanos , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/terapia , Terapia Genética , Sistema Nervoso Central , Dependovirus/genética , Glicogênio
5.
Mol Cell ; 57(2): 261-72, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25544560

RESUMO

Glycogen is the major mammalian glucose storage cache and is critical for energy homeostasis. Glycogen synthesis in neurons must be tightly controlled due to neuronal sensitivity to perturbations in glycogen metabolism. Lafora disease (LD) is a fatal, congenital, neurodegenerative epilepsy. Mutations in the gene encoding the glycogen phosphatase laforin result in hyperphosphorylated glycogen that forms water-insoluble inclusions called Lafora bodies (LBs). LBs induce neuronal apoptosis and are the causative agent of LD. The mechanism of glycogen dephosphorylation by laforin and dysfunction in LD is unknown. We report the crystal structure of laforin bound to phosphoglucan product, revealing its unique integrated tertiary and quaternary structure. Structure-guided mutagenesis combined with biophysical and biochemical analyses reveal the basis for normal function of laforin in glycogen metabolism. Analyses of LD patient mutations define the mechanism by which subsets of mutations disrupt laforin function. These data provide fundamental insights connecting glycogen metabolism to neurodegenerative disease.


Assuntos
Glicogênio/metabolismo , Doença de Lafora/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Oligossacarídeos/química , Fosfatos/química , Fosforilação , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Tirosina Fosfatases não Receptoras/fisiologia
6.
Hum Mol Genet ; 29(4): 624-634, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31913476

RESUMO

Frontotemporal dementia (FTD) is an early onset dementia characterized by progressive atrophy of the frontal and/or temporal lobes. FTD is highly heritable with mutations in progranulin accounting for 5-26% of cases in different populations. Progranulin is involved in endocytosis, secretion and lysosomal processes, but its functions under physiological and pathological conditions remains to be defined. Many FTD-causing non-sense progranulin mutations contain a premature termination codon (PTC), thus progranulin haploinsufficiency has been proposed as a major disease mechanism. Currently, there is no effective FTD treatment or therapy. Aminoglycosides are a class of antibiotics that possess a less-known function to induce eukaryotic ribosomal readthrough of PTCs to produce a full-length protein. The aminoglycoside-induced readthrough strategy has been utilized to treat multiple human diseases caused by PTCs. In this study, we tested the only clinically approved readthrough small molecule PTC124 and 11 aminoglycosides in a cell culture system on four PTCs responsible for FTD or a related neurodegenerative disease amyotrophic lateral sclerosis. We found that the aminoglycosides G418 and gentamicin rescued the expression of the progranulin R493X mutation. G418 was more effective than gentamicin (~50% rescue versus <10%), and the effect was dose- and time-dependent. The progranulin readthrough protein displayed similar subcellular localization as the wild-type progranulin protein. These data provide an exciting proof-of-concept that aminoglycosides or other readthrough-promoting compounds are a therapeutic avenue for familial FTD caused by progranulin PTC mutations.


Assuntos
Aminoglicosídeos/farmacologia , Códon sem Sentido , Demência Frontotemporal/genética , Neuroblastoma/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Progranulinas/genética , Animais , Gentamicinas/farmacologia , Camundongos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Células Tumorais Cultivadas
7.
Brain ; 144(8): 2349-2360, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-33822008

RESUMO

The hallmark of Lafora disease, a fatal neurodegenerative disorder, is the accumulation of intracellular glycogen aggregates called Lafora bodies. Until recently, it was widely believed that brain Lafora bodies were present exclusively in neurons and thus that Lafora disease pathology derived from their accumulation in this cell population. However, recent evidence indicates that Lafora bodies are also present in astrocytes. To define the role of astrocytic Lafora bodies in Lafora disease pathology, we deleted glycogen synthase specifically from astrocytes in a mouse model of the disease (malinKO). Strikingly, blocking glycogen synthesis in astrocytes-thus impeding Lafora bodies accumulation in this cell type-prevented the increase in neurodegeneration markers, autophagy impairment, and metabolic changes characteristic of the malinKO model. Conversely, mice that over-accumulate glycogen in astrocytes showed an increase in these markers. These results unveil the deleterious consequences of the deregulation of glycogen metabolism in astrocytes and change the perspective that Lafora disease is caused solely by alterations in neurons.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Glicogênio/metabolismo , Doença de Lafora/metabolismo , Degeneração Neural/metabolismo , Animais , Astrócitos/patologia , Encéfalo/patologia , Modelos Animais de Doenças , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Doença de Lafora/genética , Doença de Lafora/patologia , Camundongos , Camundongos Knockout , Degeneração Neural/genética , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
Alzheimers Dement ; 18(10): 1721-1735, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34908231

RESUMO

N-linked protein glycosylation in the brain is an understudied facet of glucose utilization that impacts a myriad of cellular processes including resting membrane potential, axon firing, and synaptic vesicle trafficking. Currently, a spatial map of N-linked glycans within the normal and Alzheimer's disease (AD) human brain does not exist. A comprehensive analysis of the spatial N-linked glycome would improve our understanding of brain energy metabolism, linking metabolism to signaling events perturbed during AD progression, and could illuminate new therapeutic strategies. Herein we report an optimized in situ workflow for enzyme-assisted, matrix-assisted laser desorption and ionization (MALDI) mass spectrometry imaging (MSI) of brain N-linked glycans. Using this workflow, we spatially interrogated N-linked glycan heterogeneity in both mouse and human AD brains and their respective age-matched controls. We identified robust regional-specific N-linked glycan changes associated with AD in mice and humans. These data suggest that N-linked glycan dysregulation could be an underpinning of AD pathologies.


Assuntos
Doença de Alzheimer , Glicômica , Humanos , Glicômica/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Encéfalo/metabolismo , Polissacarídeos/análise , Polissacarídeos/química , Polissacarídeos/metabolismo , Glucose/metabolismo
9.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35742953

RESUMO

Altered lipid metabolism is a potential target for therapeutic intervention in cancer. Overexpression of Fatty Acid Synthase (FASN) correlates with poor prognosis in colorectal cancer (CRC). While multiple studies show that upregulation of lipogenesis is critically important for CRC progression, the contribution of FASN to CRC initiation is poorly understood. We utilize a C57BL/6-Apc/Villin-Cre mouse model with knockout of FASN in intestinal epithelial cells to show that the heterozygous deletion of FASN increases mouse survival and decreases the number of intestinal adenomas. Using RNA-Seq and gene set enrichment analysis, we demonstrate that a decrease in FASN expression is associated with inhibition of pathways involved in cellular proliferation, energy production, and CRC progression. Metabolic and reverse phase protein array analyses demonstrate consistent changes in alteration of metabolic pathways involved in both anabolism and energy production. Downregulation of FASN expression reduces the levels of metabolites within glycolysis and tricarboxylic acid cycle with the most significant reduction in the level of citrate, a master metabolite, which enhances ATP production and fuels anabolic pathways. In summary, we demonstrate the critical importance of FASN during CRC initiation. These findings suggest that targeting FASN is a potential therapeutic approach for early stages of CRC or as a preventive strategy for this disease.


Assuntos
Adenoma , Neoplasias Colorretais , Adenoma/genética , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/genética , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
10.
Curr Opin Neurol ; 34(2): 206-212, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33664206

RESUMO

PURPOSE OF REVIEW: The serotonergic system is implicated in multiple aspects of epilepsy, including seizure susceptibility, sudden unexpected death in epilepsy (SUDEP), and comorbid depression. Despite the complexity of serotonin's effects on various neuronal networks, ongoing research provides considerable insight into the role of serotonin in human epilepsy. This review explores the potential roles of serotonergic therapies to improve clinical outcomes in epilepsy. RECENT FINDINGS: In recent decades, research has markedly increased our knowledge of the diverse effects of serotonin on brain function. Animal models of epilepsy have identified the influence of serotonin on seizure threshold in specific brain regions, serotoninergic augmentation's protective effects on terminal apnea and mortality in SUDEP, and mechanisms underlying behavioral improvement in some models of comorbid depression. Human clinical studies are largely consistent with animal data but the translation into definitive treatment decisions has moved less rapidly. SUMMARY: Evidence for serotonergic therapy is promising for improvement in seizure control and prevention of SUDEP. For some epilepsies, such as Dravet syndrome, basic research on serotonin receptor agonists has translated into a positive clinical trial for fenfluramine. The cumulative results of safety and efficacy studies support the routine use of SSRIs for comorbid depression in epilepsy.


Assuntos
Epilepsia , Morte Súbita Inesperada na Epilepsia , Animais , Encéfalo , Morte Súbita , Epilepsia/tratamento farmacológico , Epilepsia/epidemiologia , Humanos , Convulsões
11.
Epilepsy Behav ; 119: 107975, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33946009

RESUMO

Lafora disease (LD) is a fatal childhood dementia with severe epilepsy and also a glycogen storage disease that is caused by recessive mutations in either the EPM2A or EPM2B genes. Aberrant, cytoplasmic carbohydrate aggregates called Lafora bodies (LBs) are both a hallmark and driver of the disease. The 6th International Lafora Epilepsy Workshop was held online due to the pandemic. Nearly 300 clinicians, academic and industry scientists, trainees, NIH representatives, and LD friends and family members participated in the event. Speakers covered aspects of LD including progress towards the clinic, the importance of establishing clinical progression, translational progress with repurposed drugs and additional pre-clinical therapies, and novel discoveries that define foundational LD mechanisms.


Assuntos
Doença de Lafora , Proteínas Tirosina Fosfatases não Receptoras , Criança , Humanos , Mutação , Proteínas Tirosina Fosfatases não Receptoras/genética
12.
Neurobiol Dis ; 136: 104742, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31931141

RESUMO

The Apolipoprotein E (APOE) gene is a major genetic risk factor associated with Alzheimer's disease (AD). APOE encodes for three main isoforms in humans (E2, E3, and E4). Homozygous E4 individuals have more than a 10-fold higher risk for developing late-onset AD, while E2 carriers are protected. A hallmark of AD is a reduction in cerebral glucose metabolism, alluding to a strong metabolic component in disease onset and progression. Interestingly, E4 individuals display a similar regional pattern of cerebral glucose hypometabolism decades prior to disease onset. Mapping this metabolic landscape may help elucidate the underlying biological mechanism of APOE-associated risk for AD. Efficient metabolic coupling of neurons and glia is necessary for proper neuronal function, and disruption in glial energy distribution has been proposed to contribute to neuronal cell death and AD pathology. One important function of astrocytes - canonically the primary source of apolipoprotein E in the brain - is to provide metabolic substrates (lactate, lipids, amino acids and neurotransmitters) to neurons. Here we investigate the effects of APOE on astrocyte glucose metabolism in vitro utilizing scintillation proximity assays, stable isotope tracer metabolomics, and gene expression analyses. Glucose uptake is impaired in E4 astrocytes relative to E2 or E3 with specific alterations in central carbon metabolism. Using stable isotope labeled glucose [U-13C] allowed analyses of astrocyte-specific deep metabolic networks affected by APOE, and provided insight to the effects downstream of glucose uptake. Enrichment of 13C in early steps of glycolysis was lowest in E4 astrocytes (highest in E2), while synthesis of lactate from glucose was highest in E4 astrocytes (lowest in E2). We observed an increase in glucose flux through the pentose phosphate pathway (PPP), with downstream increases in gluconeogenesis, lipid, and de novo nucleotide biosynthesis in E4 astrocytes. There was also a marked increase in 13C enrichment in the TCA cycle of E4 astrocytes - whose substrates were also incorporated into biosynthetic pathways at a higher rate. Pyruvate carboxylase (PC) and pyruvate dehydrogenase (PDH) are the two main enzymes controlling pyruvate entry to the TCA cycle. PC gene expression is increased in E4 astrocytes and the activity relative to PDH was also increased, compared to E2 or E3. Decreased enrichment in the TCA cycle of E2 and E3 astrocytes is suggestive of increased oxidation and non-glucose derived anaplerosis, which could be fueling mitochondrial ATP production. Conversely, E4 astrocytes appear to increase carbon flux into the TCA cycle to fuel cataplerosis. Together, these data demonstrate clear APOE isoform-specific effects on glucose utilization in astrocytes, including E4-associated increases in lactate synthesis, PPP flux, and de novo biosynthesis pathways.


Assuntos
Apolipoproteína E4/metabolismo , Astrócitos/metabolismo , Isótopos de Carbono/metabolismo , Glucose/metabolismo , Animais , Apolipoproteína E4/genética , Astrócitos/química , Isótopos de Carbono/análise , Linhagem Celular Transformada , Cromatografia por Troca Iônica/métodos , Glucose/análise , Humanos , Camundongos
13.
Epilepsy Behav ; 103(Pt A): 106839, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31932179

RESUMO

Lafora disease (LD) is both a fatal childhood epilepsy and a glycogen storage disease caused by recessive mutations in either the Epilepsy progressive myoclonus 2A (EPM2A) or EPM2B genes. Hallmarks of LD are aberrant, cytoplasmic carbohydrate aggregates called Lafora bodies (LBs) that are a disease driver. The 5th International Lafora Epilepsy Workshop was recently held in Alcala de Henares, Spain. The workshop brought together nearly 100 clinicians, academic and industry scientists, trainees, National Institutes of Health (NIH) representation, and friends and family members of patients with LD. The workshop covered aspects of LD ranging from defining basic scientific mechanisms to elucidating a LD therapy or cure and a recently launched LD natural history study.


Assuntos
Congressos como Assunto/tendências , Educação/tendências , Internacionalidade , Doença de Lafora/terapia , Animais , Humanos , Doença de Lafora/epidemiologia , Doença de Lafora/genética , Mutação/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Espanha/epidemiologia
14.
J Biol Chem ; 293(19): 7117-7125, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29483193

RESUMO

Lafora disease (LD) is a fatal, autosomal recessive, glycogen-storage disorder that manifests as severe epilepsy. LD results from mutations in the gene encoding either the glycogen phosphatase laforin or the E3 ubiquitin ligase malin. Individuals with LD develop cytoplasmic, aberrant glycogen inclusions in nearly all tissues that more closely resemble plant starch than human glycogen. This Minireview discusses the unique window into glycogen metabolism that LD research offers. It also highlights recent discoveries, including that glycogen contains covalently bound phosphate and that neurons synthesize glycogen and express both glycogen synthase and glycogen phosphorylase.


Assuntos
Glicogênio/metabolismo , Doença de Lafora/metabolismo , Neurônios/metabolismo , Animais , Configuração de Carboidratos , Proteínas de Transporte/genética , Modelos Animais de Doenças , Glicogênio/biossíntese , Glicogênio/química , Glicogênio Fosforilase/genética , Humanos , Doença de Lafora/genética , Doença de Lafora/patologia , Doença de Lafora/terapia , Fosfatos/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases não Receptoras/genética , Ubiquitina-Proteína Ligases/genética
15.
Mol Pharm ; 16(9): 3791-3801, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31329461

RESUMO

Lafora disease (LD) is a fatal juvenile epilepsy characterized by the accumulation of aberrant glucan aggregates called Lafora bodies (LBs). Delivery of protein-based therapeutics to the central nervous system (CNS) for the clearance of LBs remains a unique challenge in the field. Recently, a humanized antigen-binding fragment (hFab) derived from a murine systemic lupus erythematosus DNA autoantibody (3E10) has been shown to mediate cell penetration and proposed as a broadly applicable carrier to mediate cellular targeting and uptake. We report studies on the efficacy and CNS delivery of VAL-0417, an antibody-enzyme fusion composed of the 3E10 hFab and human pancreatic α-amylase, in a mouse model of LD. An enzyme-linked immunosorbent assay has been developed to detect VAL-0417 post-treatment as a measure of delivery efficacy. We demonstrate the robust and sensitive detection of the fusion protein in multiple tissue types. Using this method, we measured biodistribution in different methods of delivery. We found that intracerebroventricular administration provided robust CNS delivery when compared to intrathecal administration. These data define critical steps in the translational pipeline of VAL-0417 for the treatment of LD.


Assuntos
Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Doença de Lafora/tratamento farmacológico , alfa-Amilases Pancreáticas/genética , alfa-Amilases Pancreáticas/farmacocinética , Animais , Fusão Gênica Artificial/métodos , Encéfalo/metabolismo , Modelos Animais de Doenças , Portadores de Fármacos/metabolismo , Ensaio de Imunoadsorção Enzimática , Glucanos/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Plasmídeos/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Distribuição Tecidual , Resultado do Tratamento
16.
Biochem Biophys Res Commun ; 497(1): 127-132, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29428737

RESUMO

Sucrose non-fermenting 1-related protein kinase 1 (SnRK1) is a central metabolic regulator and the plant orthologue of the mammalian AMP-activated protein kinase (AMPK); both are energy-sensing heterotrimeric enzymes comprising a catalytic α- and regulatory ß- and γ-subunits. α-Subunits contain a serine/threonine kinase domain (KD) at their N-terminus that is immediately followed by a small regulatory domain termed the auto-inhibitory domain (AID) in AMPK and the ubiquitin-associated domain (UBA) in SnRK1. Association of the AID with the AMPK KD inhibits activating phosphorylation of the KD by upstream kinases and promotes dephosphorylation, as well as inhibiting AMPK catalytic activity. Despite these mechanistic insights regarding the AMPK AID, the SnRK1 UBA regulatory implications have not been investigated. Using recombinant protein comprising either the KD-only or KD-AID/KD-UBA, we found that the UBA of SnRK1 acts in a distinct regulatory manner to its orthologous AID of AMPK. Firstly, the plant upstream kinase GRIK2 preferentially phosphorylates the SnRK1 KD-UBA. Secondly, the SnRK1 KD in the absence of the UBA shows near identical initial catalytic activity to the KD-UBA, but in comparison a rapid loss of catalytic activity is observed. Our findings indicate that the role of the UBA in SnRK1 regulation may be more akin to that of the UBA in the mammalian AMPK-related kinases rather than its immediate functional orthologue, AMPK. This study adds to a growing body of work demonstrating the divergent regulatory mechanisms of the orthologous plant SnRK1 and mammalian AMPK.


Assuntos
Domínio Catalítico , Proteínas de Plantas/química , Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Quinases Proteína-Quinases Ativadas por AMP , Catálise , Ativação Enzimática , Estabilidade Enzimática , Humanos , Relação Estrutura-Atividade
17.
Anal Biochem ; 563: 51-55, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30291838

RESUMO

Glucan phosphatases are a unique subset of the phosphatase family that bind to and dephosphorylate carbohydrate substrates. Family members are found in diverse organisms ranging from single-cell red algae to humans. The nature of their functional oligomerization has been a source of considerable debate. We demonstrate that the human laforin protein behaves aberrantly when subjected to Size Exclusion Chromotography (SEC) analysis due to interaction with the carbohydrate-based matrix. This interaction complicates the analysis of laforin human disease mutations. Herein, we show that SEC with Multi-Angle static Light Scattering (SEC-MALS) provides a method to robustly define the oligomerization state of laforin and laforin variants. We further analyzed glucan phosphatases from photosynthetic organisms to define if this interaction was characteristic of all glucan phosphatases. Starch EXcess-four (SEX4) from green plants was found to lack significant interaction with the matrix and instead exists as a monomer. Conversely, Cm-laforin, from red algae, exists as a monomer in solution while still exhibiting significant interaction with the matrix. These data demonstrate a range of oligomerization behaviors of members of the glucan phosphatase family, and establish SEC-MALS as a robust methodology to quantify and compare oligomerization states between different proteins and protein variants in this family.


Assuntos
Carboidratos/química , Proteínas Tirosina Fosfatases não Receptoras/química , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Cromatografia em Gel , Glucanos/metabolismo , Humanos , Ligação Proteica , Multimerização Proteica
18.
Cell Mol Life Sci ; 73(14): 2765-2778, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27147465

RESUMO

Glucan phosphatases are a family of enzymes that are functionally conserved at the enzymatic level in animals and plants. These enzymes bind and dephosphorylate glycogen in animals and starch in plants. While the enzymatic function is conserved, the glucan phosphatases employ distinct mechanisms to bind and dephosphorylate glycogen or starch. The founding member of the family is a bimodular human protein called laforin that is comprised of a carbohydrate binding module 20 (CBM20) followed by a dual specificity phosphatase domain. Plants contain two glucan phosphatases: Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2). SEX4 contains a chloroplast targeting peptide, dual specificity phosphatase (DSP) domain, a CBM45, and a carboxy-terminal motif. LSF2 is comprised of simply a chloroplast targeting peptide, DSP domain, and carboxy-terminal motif. SEX4 employs an integrated DSP-CBM glucan-binding platform to engage and dephosphorylate starch. LSF2 lacks a CBM and instead utilizes two surface binding sites to bind and dephosphorylate starch. Laforin is a dimeric protein in solution and it utilizes a tetramodular architecture and cooperativity to bind and dephosphorylate glycogen. This chapter describes the biological role of glucan phosphatases in glycogen and starch metabolism and compares and contrasts their ability to bind and dephosphorylate glucans.


Assuntos
Glucanos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Sítios de Ligação , Família Multigênica , Ligação Proteica , Especificidade por Substrato
19.
Proc Natl Acad Sci U S A ; 111(20): 7272-7, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24799671

RESUMO

Plants use the insoluble polyglucan starch as their primary glucose storage molecule. Reversible phosphorylation, at the C6 and C3 positions of glucose moieties, is the only known natural modification of starch and is the key regulatory mechanism controlling its diurnal breakdown in plant leaves. The glucan phosphatase Starch Excess4 (SEX4) is a position-specific starch phosphatase that is essential for reversible starch phosphorylation; its absence leads to a dramatic accumulation of starch in Arabidopsis, but the basis for its function is unknown. Here we describe the crystal structure of SEX4 bound to maltoheptaose and phosphate to a resolution of 1.65 Å. SEX4 binds maltoheptaose via a continuous binding pocket and active site that spans both the carbohydrate-binding module (CBM) and the dual-specificity phosphatase (DSP) domain. This extended interface is composed of aromatic and hydrophilic residues that form a specific glucan-interacting platform. SEX4 contains a uniquely adapted DSP active site that accommodates a glucan polymer and is responsible for positioning maltoheptaose in a C6-specific orientation. We identified two DSP domain residues that are responsible for SEX4 site-specific activity and, using these insights, we engineered a SEX4 double mutant that completely reversed specificity from the C6 to the C3 position. Our data demonstrate that the two domains act in consort, with the CBM primarily responsible for engaging glucan chains, whereas the DSP integrates them in the catalytic site for position-specific dephosphorylation. These data provide important insights into the structural basis of glucan phosphatase site-specific activity and open new avenues for their biotechnological utilization.


Assuntos
Proteínas de Arabidopsis/química , Fosfatases de Especificidade Dupla/química , Glucanos/química , Glucose/química , Amido/química , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Carboidratos/química , Domínio Catalítico , Clonagem Molecular , Fosfatases de Especificidade Dupla/metabolismo , Fosfatos/química , Fosforilação , Folhas de Planta/metabolismo , Ligação Proteica , Conformação Proteica
20.
J Biol Chem ; 290(38): 23361-70, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26231210

RESUMO

Glucan phosphatases are central to the regulation of starch and glycogen metabolism. Plants contain two known glucan phosphatases, Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2), which dephosphorylate starch. Starch is water-insoluble and reversible phosphorylation solubilizes its outer surface allowing processive degradation. Vertebrates contain a single known glucan phosphatase, laforin, that dephosphorylates glycogen. In the absence of laforin, water-soluble glycogen becomes insoluble, leading to the neurodegenerative disorder Lafora Disease. Because of their essential role in starch and glycogen metabolism glucan phosphatases are of significant interest, yet a comparative analysis of their activities against diverse glucan substrates has not been established. We identify active site residues required for specific glucan dephosphorylation, defining a glucan phosphatase signature motif (CζAGΨGR) in the active site loop. We further explore the basis for phosphate position-specific activity of these enzymes and determine that their diverse phosphate position-specific activity is governed by the phosphatase domain. In addition, we find key differences in glucan phosphatase activity toward soluble and insoluble polyglucan substrates, resulting from the participation of ancillary glucan-binding domains. Together, these data provide fundamental insights into the specific activity of glucan phosphatases against diverse polyglucan substrates.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Fosfatases de Especificidade Dupla/química , Glicogênio/química , Amido/química , Motivos de Aminoácidos , Humanos , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases não Receptoras/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa