RESUMO
BACKGROUND: Tetraspanin CD151 is highly expressed in endothelia and reinforces cell adhesion, but its role in vascular inflammation remains largely unknown. METHODS: In vitro molecular and cellular biological analyses on genetically modified endothelial cells, in vivo vascular biological analyses on genetically engineered mouse models, and in silico systems biology and bioinformatics analyses on CD151-related events. RESULTS: Endothelial ablation of Cd151 leads to pulmonary and cardiac inflammation, severe sepsis, and perilous COVID-19, and endothelial CD151 becomes downregulated in inflammation. Mechanistically, CD151 restrains endothelial release of proinflammatory molecules for less leukocyte infiltration. At the subcellular level, CD151 determines the integrity of multivesicular bodies/lysosomes and confines the production of exosomes that carry cytokines such as ANGPT2 (angiopoietin-2) and proteases such as cathepsin-D. At the molecular level, CD151 docks VCP (valosin-containing protein)/p97, which controls protein quality via mediating deubiquitination for proteolytic degradation, onto endolysosomes to facilitate VCP/p97 function. At the endolysosome membrane, CD151 links VCP/p97 to (1) IFITM3 (interferon-induced transmembrane protein 3), which regulates multivesicular body functions, to restrain IFITM3-mediated exosomal sorting, and (2) V-ATPase, which dictates endolysosome pH, to support functional assembly of V-ATPase. CONCLUSIONS: Distinct from its canonical function in strengthening cell adhesion at cell surface, CD151 maintains endolysosome function by sustaining VCP/p97-mediated protein unfolding and turnover. By supporting protein quality control and protein degradation, CD151 prevents proteins from (1) buildup in endolysosomes and (2) discharge through exosomes, to limit vascular inflammation. Also, our study conceptualizes that balance between degradation and discharge of proteins in endothelial cells determines vascular information. Thus, the IFITM3/V-ATPase-tetraspanin-VCP/p97 complexes on endolysosome, as a protein quality control and inflammation-inhibitory machinery, could be beneficial for therapeutic intervention against vascular inflammation.
Assuntos
COVID-19 , Endossomos , Lisossomos , Tetraspanina 24 , Animais , Lisossomos/metabolismo , Tetraspanina 24/metabolismo , Tetraspanina 24/genética , Humanos , Camundongos , COVID-19/metabolismo , COVID-19/imunologia , COVID-19/patologia , Endossomos/metabolismo , Camundongos Knockout , Vasculite/metabolismo , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Inflamação/metabolismo , Inflamação/patologia , Sepse/metabolismoRESUMO
OBJECTIVE: Identify autoantibodies in anti-Ro/SS-A negative primary Sjögren's syndrome (SS). METHODS: This is a proof-of-concept, case-control study of SS, healthy (HC) and other disease (OD) controls. A discovery dataset of plasma samples (n=30 SS, n=15 HC) was tested on human proteome arrays containing 19 500 proteins. A validation dataset of plasma and stimulated parotid saliva from additional SS cases (n=46 anti-Ro+, n=50 anti-Ro-), HC (n=42) and OD (n=54) was tested on custom arrays containing 74 proteins. For each protein, the mean+3 SD of the HC value defined the positivity threshold. Differences from HC were determined by Fisher's exact test and random forest machine learning using 2/3 of the validation dataset for training and 1/3 for testing. Applicability of the results was explored in an independent rheumatology practice cohort (n=38 Ro+, n=36 Ro-, n=10 HC). Relationships among antigens were explored using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) interactome analysis. RESULTS: Ro+ SS parotid saliva contained autoantibodies binding to Ro60, Ro52, La/SS-B and muscarinic receptor 5. SS plasma contained 12 novel autoantibody specificities, 11 of which were detected in both the discovery and validation datasets. Binding to ≥1 of the novel antigens identified 54% of Ro- SS and 37% of Ro+ SS cases, with 100% specificity in both groups. Machine learning identified 30 novel specificities showing receiver operating characteristic area under the curve of 0.79 (95% CI 0.64 to 0.93) for identifying Ro- SS. Sera from Ro- cases of an independent cohort bound 17 of the non-canonical antigens. Antigenic targets in both Ro+ and Ro- SS were part of leukaemia cell, ubiquitin conjugation and antiviral defence pathways. CONCLUSION: We identified antigenic targets of the autoantibody response in SS that may be useful for identifying up to half of Ro seronegative SS cases.
Assuntos
Autoanticorpos , Síndrome de Sjogren , Humanos , Estudos de Casos e Controles , Autoantígenos , Curva ROC , Imunoglobulina G , Anticorpos AntinuclearesRESUMO
Activation of coagulation factor (F) XI promotes multiorgan failure in rodent models of sepsis and in a baboon model of lethal systemic inflammation induced by infusion of heat-inactivated Staphylococcus aureus. Here we used the anticoagulant FXII-neutralizing antibody 5C12 to verify the mechanistic role of FXII in this baboon model. Compared with untreated control animals, repeated 5C12 administration before and at 8 and 24 hours after bacterial challenge prevented the dramatic increase in circulating complexes of contact system enzymes FXIIa, FXIa, and kallikrein with antithrombin or C1 inhibitor, and prevented cleavage and consumption of high-molecular-weight kininogen. Activation of several coagulation factors and fibrinolytic enzymes was also prevented. D-dimer levels exhibited a profound increase in the untreated animals but not in the treated animals. The antibody also blocked the increase in plasma biomarkers of inflammation and cell damage, including tumor necrosis factor, interleukin (IL)-1ß, IL-6, IL-8, IL-10, granulocyte-macrophage colony-stimulating factor, nucleosomes, and myeloperoxidase. Based on clinical presentation and circulating biomarkers, inhibition of FXII prevented fever, terminal hypotension, respiratory distress, and multiorgan failure. All animals receiving 5C12 had milder and transient clinical symptoms and were asymptomatic at day 7, whereas untreated control animals suffered irreversible multiorgan failure and had to be euthanized within 2 days after the bacterial challenge. This study confirms and extends our previous finding that at least 2 enzymes of the contact activation complex, FXIa and FXIIa, play critical roles in the development of an acute and terminal inflammatory response in baboons challenged with heat-inactivated S aureus.
Assuntos
Fator XII/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/microbiologia , Staphylococcus aureus/fisiologia , Animais , Anticorpos/uso terapêutico , Transtornos da Coagulação Sanguínea/complicações , Transtornos da Coagulação Sanguínea/imunologia , Transtornos da Coagulação Sanguínea/microbiologia , Plaquetas/metabolismo , Microambiente Celular , Ativação do Complemento , Fator XII/imunologia , Feminino , Fibrinogênio/metabolismo , Temperatura Alta , Inflamação/complicações , Inflamação/patologia , Masculino , Insuficiência de Múltiplos Órgãos/imunologia , Papio , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Análise de SobrevidaRESUMO
BACKGROUND: Inducible disruption of cilia-related genes in adult mice results in slowly progressive cystic disease, which can be greatly accelerated by renal injury. METHODS: To identify in an unbiased manner modifier cells that may be influencing the differential rate of cyst growth in injured versus non-injured cilia mutant kidneys at a time of similar cyst severity, we generated a single-cell atlas of cystic kidney disease. We conducted RNA-seq on 79,355 cells from control mice and adult-induced conditional Ift88 mice (hereafter referred to as cilia mutant mice) that were harvested approximately 7 months post-induction or 8 weeks post 30-minute unilateral ischemia reperfusion injury. RESULTS: Analyses of single-cell RNA-seq data of CD45+ immune cells revealed that adaptive immune cells differed more in cluster composition, cell proportion, and gene expression than cells of myeloid origin when comparing cystic models with one another and with non-cystic controls. Surprisingly, genetic deletion of adaptive immune cells significantly reduced injury-accelerated cystic disease but had no effect on cyst growth in non-injured cilia mutant mice, independent of the rate of cyst growth or underlying genetic mutation. Using NicheNet, we identified a list of candidate cell types and ligands that were enriched in injured cilia mutant mice compared with aged cilia mutant mice and non-cystic controls that may be responsible for the observed dependence on adaptive immune cells during injury-accelerated cystic disease. CONCLUSIONS: Collectively, these data highlight the diversity of immune cell involvement in cystic kidney disease.
Assuntos
Cistos , Doenças Renais Policísticas , Animais , Cílios/metabolismo , Cistos/genética , Rim/metabolismo , Camundongos , Mutação , Doenças Renais Policísticas/metabolismoRESUMO
Oxidative damage is believed to play a major role in the etiology of many age-related diseases and the normal aging process. We previously reported that sulindac, a cyclooxygenase (COX) inhibitor and FDA approved anti-inflammatory drug, has chemoprotective activity in cells and intact organs by initiating a pharmacological preconditioning response, similar to ischemic preconditioning (IPC). The mechanism is independent of its COX inhibitory activity as suggested by studies on the protection of the heart against oxidative damage from ischemia/reperfusion and retinal pigmented endothelial (RPE) cells against chemical oxidative and UV damage . Unfortunately, sulindac is not recommended for long-term use due to toxicities resulting from its COX inhibitory activity. To develop a safer and more efficacious derivative of sulindac, we screened a library of indenes and identified a lead compound, MCI-100, that lacked significant COX inhibitory activity but displayed greater potency than sulindac to protect RPE cells against oxidative damage. MCI-100 also protected the intact rat heart against ischemia/reperfusion damage following oral administration. The chemoprotective activity of MCI-100 involves a preconditioning response similar to sulindac, which is supported by RNA sequencing data showing common genes that are induced or repressed by sulindac or MCI-100 treatment. Both sulindac and MCI-100 protection against oxidative damage may involve modulation of Wnt/ß-catenin signaling resulting in proliferation while inhibiting TGFb signaling leading to apoptosis. In summary MCI-100, is more active than sulindac in protecting cells against oxidative damage, but without significant NSAID activity, and could have therapeutic potential in treatment of diseases that involve oxidative damage. Significance Statement In this study, we describe a novel sulindac derivative, MCI-100, that lacks significant COX inhibitory activity, but is appreciably more potent than sulindac in protecting retinal pigmented epithelial (RPE) cells against oxidative damage. Oral administration of MCI-100 markedly protected the rat heart against ischemia/reperfusion damage. MCI-100 has potential therapeutic value as a drug candidate for age-related diseases by protecting cells against oxidative damage and preventing organ failure.
RESUMO
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the United States and is primarily caused by cigarette smoking. Increased numbers of mucus-producing secretory ("goblet") cells, defined as goblet cell metaplasia or hyperplasia (GCMH), contributes significantly to COPD pathophysiology. The objective of this study was to determine whether NOTCH signaling regulates goblet cell differentiation in response to cigarette smoke. Primary human bronchial epithelial cells (HBECs) from nonsmokers and smokers with COPD were differentiated in vitro on air-liquid interface and exposed to cigarette smoke extract (CSE) for 7 days. NOTCH signaling activity was modulated using 1) the NOTCH/γ-secretase inhibitor dibenzazepine (DBZ), 2) lentiviral overexpression of the NICD3 (NOTCH3-intracellular domain), or 3) NOTCH3-specific siRNA. Cell differentiation and response to CSE were evaluated by quantitative PCR, Western blotting, immunostaining, and RNA sequencing. We found that CSE exposure of nonsmoker airway epithelium induced goblet cell differentiation characteristic of GCMH. Treatment with DBZ suppressed CSE-dependent induction of goblet cell differentiation. Furthermore, CSE induced NOTCH3 activation, as revealed by increased NOTCH3 nuclear localization and elevated NICD3 protein levels. Overexpression of NICD3 increased the expression of goblet cell-associated genes SPDEF and MUC5AC, whereas NOTCH3 knockdown suppressed CSE-mediated induction of SPDEF and MUC5AC. Finally, CSE exposure of COPD airway epithelium induced goblet cell differentiation in a NOTCH3-dependent manner. These results identify NOTCH3 activation as one of the important mechanisms by which cigarette smoke induces goblet cell differentiation, thus providing a novel potential strategy to control GCMH-related pathologies in smokers and patients with COPD.
Assuntos
Brônquios/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Fumar Cigarros/efeitos adversos , Células Caliciformes/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/etiologia , Receptor Notch3/agonistas , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Brônquios/metabolismo , Brônquios/patologia , Estudos de Casos e Controles , Células Cultivadas , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Humanos , não Fumantes , Cultura Primária de Células , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Receptor Notch3/genética , Receptor Notch3/metabolismo , Transdução de Sinais , Fumantes , Fatores de Tempo , TranscriptomaRESUMO
Group 2 innate lymphoid cells (ILC2s) represent a subset of newly discovered immune cells that are involved in immune reactions against microbial pathogens, host allergic reactions, as well as tissue repair. The basic helix-loop-helix transcription factors collectively called E proteins powerfully suppress the differentiation of ILC2s from bone marrow and thymic progenitors while promoting the development of B and T lymphocytes. How E proteins exert the suppression is not well understood. Here we investigated the underlying molecular mechanisms using inducible gain and loss of function approaches in ILC2s and their precursors, respectively. Cross-examination of RNA-seq and ATAC sequencing data obtained at different time points reveals a set of genes that are likely direct targets of E proteins. Consequently, a widespread down-regulation of chromatin accessibility occurs at a later time point, possibly due to the activation of transcriptional repressor genes such as Cbfa2t3 and Jdp2 The large number of genes repressed by gain of E protein function leads to the down-regulation of a transcriptional network important for ILC2 differentiation.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Redes Reguladoras de Genes , Imunidade Inata , Linfócitos/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Cromatina/metabolismo , Expressão Gênica , Linfócitos/citologia , Linfócitos/imunologia , CamundongosRESUMO
In dividing cells, DNA replication occurs in a precise order, but many questions remain regarding the mechanisms of replication timing establishment and regulation. We now have generated genome-wide, high-resolution replication timing maps throughout zebrafish development. Unexpectedly, in the rapid cell cycles preceding the midblastula transition, a defined timing program was present that predicted the initial wave of zygotic transcription. Replication timing was thereafter progressively and continuously remodeled across the majority of the genome, and epigenetic changes involved in enhancer activation frequently paralleled developmental changes in replication timing. The long arm of Chromosome 4 underwent a dramatic developmentally regulated switch to late replication during gastrulation, reminiscent of mammalian X Chromosome inactivation. This study reveals that replication timing is dynamic and tightly linked to epigenetic and transcriptional changes throughout early zebrafish development. These data provide insight into the regulation and functions of replication timing and will enable further mechanistic studies.
Assuntos
Período de Replicação do DNA , Embrião não Mamífero/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Transcrição Gênica , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/genética , Animais , Embrião não Mamífero/citologia , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodosRESUMO
Signal transducer and activator of transcription 1 (Stat1) is a ubiquitously expressed latent transcription factor that is activated by many cytokines and growth factors. Global Stat1 knockout mice are prone to chemical-induced lung and liver fibrosis, suggesting roles for Stat1 in tissue repair. However, the importance of Stat1 in fibroblast-mediated and vascular smooth muscle cell (VSMC)-mediated injury response has not been directly evaluated in vivo. Here, we focused on two models of tissue repair in conditional Stat1 knockout mice: excisional skin wounding in mice with Stat1 deletion in dermal fibroblasts, and carotid artery ligation in mice with global Stat1 deletion or deletion specific to VSMCs. In the skin model, dermal wounds closed at a similar rate in mice with fibroblast Stat1 deletion and controls, but collagen and α-smooth muscle actin (αSMA) expression were increased in the mutant granulation tissue. Cultured Stat1 -/- and Stat1 +/- dermal fibroblasts exhibited similar αSMA+ stress fiber assembly, collagen gel contraction, proliferation, migration, and growth factor-induced gene expression. In the artery ligation model, there was a significant increase in fibroblast-driven perivascular fibrosis when Stat1 was deleted globally. However, VSMC-driven remodeling and neointima formation were unchanged when Stat1 was deleted specifically in VSMCs. These results suggest an in vivo role for Stat1 as a suppressor of fibroblast mediated, but not VSMC mediated, injury responses, and a suppressor of the myofibroblast phenotype.
Assuntos
Artérias Carótidas/metabolismo , Fibroblastos/metabolismo , Miócitos de Músculo Liso/metabolismo , Miofibroblastos/metabolismo , Reepitelização/genética , Fator de Transcrição STAT1/genética , Pele/metabolismo , Actinas/metabolismo , Animais , Lesões das Artérias Carótidas/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Colágeno/metabolismo , Regulação da Expressão Gênica/genética , Tecido de Granulação/metabolismo , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Fenótipo , Cicatrização/genéticaRESUMO
Sarcopenia has a significant negative impact on healthspan in the elderly and effective pharmacologic interventions remain elusive. We have previously demonstrated that sarcopenia is associated with reduced activity of the sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump. We asked whether restoring SERCA activity using pharmacologic activation in aging mice could mitigate the sarcopenia phenotype. We treated 16-month male C57BL/6J mice with vehicle or CDN1163, an allosteric SERCA activator, for 10 months. At 26 months, maximal SERCA activity was reduced 41% in gastrocnemius muscle in vehicle-treated mice but maintained in old CDN1163 treated mice. Reductions in gastrocnemius mass (9%) and in vitro specific force generation in extensor digitorum longus muscle (11%) in 26 versus 16-month-old wild-type mice were also reversed by CDN1163. CDN1163 administered by intra-peritoneal injection also prevented the increase in mitochondrial ROS production in gastrocnemius muscles of aged mice. Transcriptomic analysis revealed that these effects are at least in part mediated by enhanced cellular energetics by activation of PGC1-α, UCP1, HSF1, and APMK and increased regenerative capacity by suppression of MEF2C and p38 MAPK signaling. Together, these exciting findings are the first to support that pharmacological targeting of SERCA can be an effective therapy to counter age-related muscle dysfunction.
Assuntos
Aminoquinolinas/farmacologia , Benzamidas/farmacologia , Debilidade Muscular/prevenção & controle , Atrofia Muscular/prevenção & controle , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fatores Etários , Aminoquinolinas/administração & dosagem , Animais , Benzamidas/administração & dosagem , Ativação Enzimática/efeitos dos fármacos , Injeções Intraperitoneais , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Debilidade Muscular/fisiopatologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 1/metabolismoRESUMO
Motivation: Studies, mostly from the operations/management literature, have shown that the rate of human error increases with task complexity. What is not known is how many errors make it into the published literature, given that they must slip by peer-review. By identifying paired, dependent values within text for reported calculations of varying complexity, we can identify discrepancies, quantify error rates and identify mitigating factors. Results: We extracted statistical ratios from MEDLINE abstracts (hazard ratio, odds ratio, relative risk), their 95% CIs, and their P-values. We re-calculated the ratios and P-values using the reported CIs. For comparison, we also extracted percent-ratio pairs, one of the simplest calculation tasks. Over 486 000 published values were found and analyzed for discrepancies, allowing for rounding and significant figures. Per reported item, discrepancies were less frequent in percent-ratio calculations (2.7%) than in ratio-CI and P-value calculations (5.6-7.5%), and smaller discrepancies were more frequent than large ones. Systematic discrepancies (multiple incorrect calculations of the same type) were higher for more complex tasks (14.3%) than simple ones (6.7%). Discrepancy rates decreased with increasing journal impact factor (JIF) and increasing number of authors, but with diminishing returns and JIF accounting for most of the effect. Approximately 87% of the 81 937 extracted P-values were ≤ 0.05. Conclusion: Using a simple, yet accurate, approach to identifying paired values within text, we offer the first quantitative evaluation of published error frequencies within these types of calculations. Contact: jonathan-wren@omrf.org or jdwren@gmail.com. Supplementary information: Supplementary data are available at Bioinformatics online.
Assuntos
Algoritmos , Intervalos de Confiança , Humanos , MEDLINE , PublicaçõesRESUMO
Type I interferons (IFN) causes inflammatory responses to pathogens, and can be elevated in autoimmune diseases such as systemic lupus erythematosus (SLE). We previously reported unexpected associations of increased numbers of B lymphocytes expressing the DNA-binding protein ARID3a with both IFN alpha (IFNα) expression and increased disease activity in SLE. Here, we determined that IFNα producing low density neutrophils (LDNs) and plasmacytoid dendritic cells (pDCs) from SLE patients exhibit strong associations between ARID3a protein expression and IFNα production. Moreover, SLE disease activity indices correlate most strongly with percentages of ARID3a+ LDNs, but were also associated, less significantly, with IFNα expression in LDNs and pDCs. Hierarchical clustering and transcriptome analyses of LDNs and pDCs revealed SLE patients with low ARID3a expression cluster with healthy controls and identified gene profiles associated with increased proportions of ARID3a- and IFNα-expressing cells of each type. These data identify ARID3a as a potential transcription regulator of IFNα-related inflammatory responses and other pathways important for SLE disease activity.
Assuntos
Linfócitos B/fisiologia , Proteínas de Ligação a DNA/genética , Células Dendríticas/fisiologia , Interferon-alfa/metabolismo , Lúpus Eritematoso Sistêmico/genética , Neutrófilos/fisiologia , Fatores de Transcrição/genética , Adulto , Idoso , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Estudos de Associação Genética , Humanos , Imunidade Inata , Interferon-alfa/genética , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , TranscriptomaRESUMO
Purpose: Dimethyl fumarate (DMF) has been approved by the U.S. Food and Drug Administration (FDA) for the treatment of relapsing-remitting multiple sclerosis (RRMS), a demyelinating autoimmune disease characterized by acute episodes of motor, sensory, and cognitive symptoms. Optic neuritis is an episodic sequela experienced by some patients with RRMS that typically presents as acute, monocular vision loss. Episodes of optic neuritis damage and kill retinal ganglion cells (RGCs), and can culminate in permanent vision loss. The purpose of these studies was to evaluate the capacity of DMF to mitigate optic neuritis. The work presented combines studies of a mouse model of MS and a retrospective chart analysis of files of patients with RRMS treated at the MS Center of Excellence within the Oklahoma Medical Research Foundation. Methods: Experimental autoimmune encephalomyelitis (EAE) is a well-established mouse model that recapitulates cardinal features of somatic and visual MS pathologies. EAE was induced in female C57BL/6J mice by inoculation with myelin oligodendrocyte glycoprotein peptide (residues 35-55; MOG35-55). DMF or vehicle was administered twice a day by oral gavage. Visual acuity was measured longitudinally with optokinetic tracking. Post-mortem analyses included quantification of RGCs in retinal flatmounts and quantitative PCR (qPCR) of Nrf2 target genes and regulators of myelin. Retrospective chart analyses were performed using data obtained from deidentified files of patients with RRMS. Results: In the EAE mouse studies, DMF decreased optic neuritis severity, preserved vision and RGCs, and concomitantly reduced motor deficits when administered by two different treatment regimens (prevention or interventional). DMF was more efficacious when administered as an interventional therapy, and the beneficial effects occurred independently of the induction of Nrf2 target genes. A complementary retrospective chart analysis demonstrated that DMF increased the time to a recurrence of optic neuritis, and protected against subsequent bouts of optic neuritis. Conclusions: This work underscores the potential of DMF to mitigate the severity and recurrence of optic neuritis episodes in patients with RRMS.
Assuntos
Fumarato de Dimetilo/uso terapêutico , Neurite Óptica/tratamento farmacológico , Animais , Fumarato de Dimetilo/farmacologia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Neurite Óptica/patologia , Neurite Óptica/fisiopatologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Visão Ocular/efeitos dos fármacos , Acuidade Visual/efeitos dos fármacosRESUMO
BACKGROUND: The clinical behavior of prostate cancer (PCa) is variable, and while the majority of cases remain indolent, 10% of patients progress to deadly forms of the disease. Current clinical predictors used at the time of diagnosis have limitations to accurately establish progression risk. Here we describe the development of a tumor suppressor regulated, cell-cycle gene expression based prognostic signature for PCa, and validate its independent contribution to risk stratification in several radical prostatectomy (RP) patient cohorts. METHODS: We used RNA interference experiments in PCa cell lines to identify a gene expression based gene signature associated with Tmeff2, an androgen regulated, tumor suppressor gene whose expression shows remarkable heterogeneity in PCa. Gene expression was confirmed by qRT-PCR. Correlation of the signature with disease outcome (time to recurrence) was retrospectively evaluated in four geographically different cohorts of patients that underwent RP (834 samples), using multivariate logistical regression analysis. Multivariate analyses were adjusted for standard clinicopathological variables. Performance of the signature was compared to previously described gene expression based signatures using the SigCheck software. RESULTS: Low levels of TMEFF2 mRNA significantly (p < 0.0001) correlated with reduced disease-free survival (DFS) in patients from the Memorial Sloan Kettering Cancer Center (MSKCC) dataset. We identified a panel of 11 TMEFF2 regulated cell cycle related genes (TMCC11), with strong prognostic value. TMCC11 expression was significantly associated with time to recurrence after prostatectomy in four geographically different patient cohorts (2.9 ≤ HR ≥ 4.1; p ≤ 0.002), served as an independent indicator of poor prognosis in the four RP cohorts (1.96 ≤ HR ≥ 4.28; p ≤ 0.032) and improved the prognostic value of standard clinicopathological markers. The prognostic ability of TMCC11 panel exceeded previously published oncogenic gene signatures (p = 0.00017). CONCLUSIONS: This study provides evidence that the TMCC11 gene signature is a robust independent prognostic marker for PCa, reveals the value of using highly heterogeneously expressed genes, like Tmeff2, as guides to discover prognostic indicators, and suggests the possibility that low Tmeff2 expression marks a distinct subclass of PCa.
Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Recidiva Local de Neoplasia/diagnóstico , Neoplasias da Próstata/diagnóstico , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Progressão da Doença , Intervalo Livre de Doença , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/cirurgia , Valor Preditivo dos Testes , Prognóstico , Próstata/patologia , Próstata/cirurgia , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/cirurgia , RNA Mensageiro/metabolismo , Estudos RetrospectivosRESUMO
Scientific Data Analysis Resources (SDARs) such as bioinformatics programs, web servers and databases are integral to modern science, but previous studies have shown that the Uniform Resource Locators (URLs) linking to them decay in a time-dependent manner, with â¼27% decayed to date. Because SDARs are overrepresented among science's most cited papers over the past 20 years, loss of widely used SDARs could be particularly disruptive to scientific research. We identified URLs in MEDLINE abstracts and used crowdsourcing to identify which reported the creation of SDARs. We used the Internet Archive's Wayback Machine to approximate 'death dates' and calculate citations/year over each SDAR's lifespan. At first glance, decayed SDARs did not significantly differ from available SDARs in their average citations per year over their lifespan or journal impact factor (JIF). But the most cited SDARs were 94% likely to be relocated to another URL versus only 34% of uncited ones. Taking relocation into account, we find that citations are the strongest predictors of current online availability after time since publication, and JIF modestly predictive. This suggests that URL decay is a general, persistent phenomenon affecting all URLs, but the most useful/recognized SDARs are more likely to persist.
Assuntos
Biologia Computacional , Internet , Publicações Periódicas como Assunto , Fator de Impacto de Revistas , MEDLINERESUMO
PURPOSE: Optic neuritis, inflammation of the optic nerve, is experienced by most patients with multiple sclerosis (MS) and is typically characterized by episodes of acute, monocular vision loss. These episodes of inflammation can lead to damage or degeneration of the retinal ganglion cells (RGCs), the axons of which comprise the optic nerve. Experimental autoimmune encephalomyelitis (EAE) is a well-established model of MS in which mice are immunized to produce a neuroautoimmunity that recapitulates the cardinal hallmarks of human disease, namely, inflammation, demyelination, and neurodegeneration of the brain, spinal cord, and optic nerve. Inflammation-associated oxidative stress plays a key role in promoting spinal cord damage in EAE. However, the role of oxidative stress in optic neuritis and the associated visual deficits has not been studied. To address this gap in research, we sought to determine how a deficiency in the master antioxidant transcription factor (using nuclear factor-E2-related factor [Nrf2]-deficient mice) affects visual pathology in the EAE model. METHODS: EAE was induced in 8-week-old wild-type (WT) and Nrf2 knockout (KO) mice by immunization against the myelin oligodendrocyte glycoprotein (MOG) peptide antigen. Motor deficits were monitored daily, as was visual acuity using the established functional optokinetic tracking (OKT) assay. Mice were euthanized 21 days post-immunization for histological analyses. The optic nerves were paraffin-embedded and stained with hematoxylin and eosin (H&E) or immune cell type-specific antibodies to analyze inflammatory infiltrates. The retinas were flatmounted and stained with an RGC-specific antibody, and the RGCs were counted to assess neurodegeneration. T-helper (Th) cell-associated cytokines were measured in spleens with enzyme-linked immunosorbent assay (ELISA). Immune analyses of healthy, non-EAE mice were characterized with flow cytometry to assess the baseline immune cell profiles. RESULTS: Female Nrf2 KO mice exhibited more severe EAE-induced motor deficits compared with female WT mice. In both genders, EAE elicited more severe visual acuity deficits, inflammation of the optic nerve, and RGC degeneration in KO mice compared with their strain- and age-matched WT counterparts. Visual acuity deficits were primarily present in (and only exacerbated in) one eye of each mouse. Excess inflammatory cells within the optic nerves of the KO mice were primarily comprised of T-cells, and greater RGC degeneration in the KO mice was most prevalent in the central retina compared with the peripheral retina. Nrf2 KO spleens exhibited an increased Th1- but not Th17-associated immune response. This enhanced pathology in the KO mice was not due to global differences in immune system development between the two genotypes. CONCLUSIONS: This is the first study to report that genetic ablation of Nrf2 exacerbates visual deficits, inflammation of the optic nerve, and RGC degeneration in a murine model of MS, suggesting that Nrf2 plays a neuro- and cytoprotective role in EAE-associated optic neuritis.
Assuntos
Encefalomielite Autoimune Experimental/complicações , Encefalomielite Autoimune Experimental/patologia , Fator 2 Relacionado a NF-E2/deficiência , Neurite Óptica/complicações , Neurite Óptica/patologia , Acuidade Visual , Animais , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/fisiopatologia , Feminino , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Nervo Óptico/patologia , Neurite Óptica/fisiopatologia , Paralisia/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Caracteres Sexuais , Baço/patologia , Células Th1/metabolismoRESUMO
PURPOSE: Optic neuritis affects most patients with multiple sclerosis (MS), and current treatments are unreliable. The purpose of this study was to characterize the contribution of Th1 and Th17 cells to the development of optic neuritis. METHODS: Mice were passively transferred myelin-specific Th1 or Th17 cells to induce experimental autoimmune encephalomyelitis (EAE), a model of neuroautoimmunity. Visual acuity was assessed daily with optokinetic tracking, and 1, 2, and 3 weeks post-induction, optic nerves and retinas were harvested for immunohistochemical analyses. RESULTS: Passive transfer experimental autoimmune encephalomyelitis elicits acute episodes of asymmetric visual deficits and is exacerbated in Th17-EAE relative to Th1-EAE. The Th17-EAE optic nerves contained more inflammatory infiltrates and an increased neutrophil to macrophage ratio. Significant geographic degeneration of the retinal ganglion cells accompanied Th17-EAE but not Th1. CONCLUSIONS: Th17-induced transfer EAE recapitulates pathologies observed in MS-associated optic neuritis, namely, monocular episodes of vision loss, optic nerve inflammation, and geographic retinal ganglion cell (RGC) degeneration.
Assuntos
Encefalomielite Autoimune Experimental/imunologia , Bainha de Mielina/imunologia , Neurite Óptica/imunologia , Células Ganglionares da Retina/patologia , Células Th17/imunologia , Animais , Apoptose/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Feminino , Imunização Passiva , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Neutrófilos/imunologia , Neurite Óptica/patologia , Células Th1/imunologia , Acuidade Visual/fisiologiaRESUMO
Acute respiratory distress syndrome (ARDS) induced by severe sepsis can trigger persistent inflammation and fibrosis. We have shown that experimental sepsis in baboons recapitulates ARDS progression in humans, including chronic inflammation and long-lasting fibrosis in the lung. Complement activation products may contribute to the fibroproliferative response, suggesting that complement inhibitors are potential therapeutic agents. We have been suggested that treatment of septic baboons with compstatin, a C3 convertase inhibitor protects against ARDS-induced fibroproliferation. Baboons challenged with 10(9) cfu/kg (LD50) live E. coli by intravenous infusion were treated or not with compstatin at the time of challenge or 5 hrs thereafter. Changes in the fibroproliferative response at 24 hrs post-challenge were analysed at both transcript and protein levels. Gene expression analysis showed that sepsis induced fibrotic responses in the lung as early as 24 hrs post-bacterial challenge. Immunochemical and biochemical analysis revealed enhanced collagen synthesis, induction of profibrotic factors and increased cell recruitment and proliferation. Specific inhibition of complement with compstatin down-regulated sepsis-induced fibrosis genes, including transforming growth factor-beta (TGF-ß), connective tissue growth factor (CTGF), tissue inhibitor of metalloproteinase 1 (TIMP1), various collagens and chemokines responsible for fibrocyte recruitment (e.g. chemokine (C-C motif) ligand 2 (CCL2) and 12 (CCL12)). Compstatin decreased the accumulation of myofibroblasts and proliferating cells, reduced the production of fibrosis mediators (TGF-ß, phospho-Smad-2 and CTGF) and inhibited collagen deposition. Our data demonstrate that complement inhibition effectively attenuates collagen deposition and fibrotic responses in the lung after severe sepsis. Inhibiting complement could prove an attractive strategy for preventing sepsis-induced fibrosis of the lung.
Assuntos
Bacteriemia/tratamento farmacológico , Ativação do Complemento/efeitos dos fármacos , Inativadores do Complemento/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Pulmão/patologia , Peptídeos Cíclicos/uso terapêutico , Animais , Bacteriemia/imunologia , Bacteriemia/patologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/fisiopatologia , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologiaRESUMO
BACKGROUND: UbcM2 is a ubiquitin-conjugating enzyme with roles in the turnover of damaged and misfolded proteins, cell cycle progression, development, and regulation of the antioxidant transcription factor, Nrf2. Recent screens have identified binding partners of the enzyme that are associated with various neurodegenerative diseases, and our previous studies have shown that UbcM2 is enriched in retina and brain. RESULTS: In the current study, we characterized UbcM2 protein expression in various structures and cell types in the murine brain. Immunofluorescence analysis of paraffin-embedded brain sections revealed that UbcM2 is ubiquitously expressed throughout the brain, is enriched in hindbrain and cortex, and is robustly expressed in neurons. In contrast, the enzyme is undetectable in most astrocytes and microglia. As dysfunction of the ubiquitin proteasome system (UPS) has been linked to many age-related neurological diseases, we compared UbcM2 expression levels in young versus aged wild-type mice and found a global decrease in expression in aged brains, with reductions of 10 % or greater in five substructures (cerebellar granule cell layer, primary motor cortex, olfactory nucleus, superior colliculus, and secondary visual cortex). CONCLUSIONS: These studies represent the first protein expression profiling of a ubiquitin-conjugating enzyme in the brain and support the notion that deficits in protein degradation and proteostasis associated with neurodegenerative diseases may be, in part, attributable to age-dependent reductions in the enzymatic machinery of the UPS.
Assuntos
Córtex Cerebral/metabolismo , Neurônios/metabolismo , Rombencéfalo/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Fatores Etários , Animais , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Genetic variants that modify brain gene expression may also influence risk for human diseases. We measured expression levels of 24,526 transcripts in brain samples from the cerebellum and temporal cortex of autopsied subjects with Alzheimer's disease (AD, cerebellar n=197, temporal cortex n=202) and with other brain pathologies (non-AD, cerebellar n=177, temporal cortex n=197). We conducted an expression genome-wide association study (eGWAS) using 213,528 cisSNPs within ± 100 kb of the tested transcripts. We identified 2,980 cerebellar cisSNP/transcript level associations (2,596 unique cisSNPs) significant in both ADs and non-ADs (q<0.05, p=7.70 × 10(-5)-1.67 × 10(-82)). Of these, 2,089 were also significant in the temporal cortex (p=1.85 × 10(-5)-1.70 × 10(-141)). The top cerebellar cisSNPs had 2.4-fold enrichment for human disease-associated variants (p<10(-6)). We identified novel cisSNP/transcript associations for human disease-associated variants, including progressive supranuclear palsy SLCO1A2/rs11568563, Parkinson's disease (PD) MMRN1/rs6532197, Paget's disease OPTN/rs1561570; and we confirmed others, including PD MAPT/rs242557, systemic lupus erythematosus and ulcerative colitis IRF5/rs4728142, and type 1 diabetes mellitus RPS26/rs1701704. In our eGWAS, there was 2.9-3.3 fold enrichment (p<10(-6)) of significant cisSNPs with suggestive AD-risk association (p<10(-3)) in the Alzheimer's Disease Genetics Consortium GWAS. These results demonstrate the significant contributions of genetic factors to human brain gene expression, which are reliably detected across different brain regions and pathologies. The significant enrichment of brain cisSNPs among disease-associated variants advocates gene expression changes as a mechanism for many central nervous system (CNS) and non-CNS diseases. Combined assessment of expression and disease GWAS may provide complementary information in discovery of human disease variants with functional implications. Our findings have implications for the design and interpretation of eGWAS in general and the use of brain expression quantitative trait loci in the study of human disease genetics.