Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Diabetes Metab Res Rev ; 40(3): e3792, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517704

RESUMO

AIMS: Sulfatide is a chaperone for insulin manufacturing in beta cells. Here we explore whether the blood glucose values normally could be associated with this sphingolipid and especially two of its building enzymes CERS2 and CERS6. Both T1D and T2D have low blood sulfatide levels, and insulin resistance on beta cells at clinical diagnosis. Furthermore, we examined islet pericytes for sulfatide, and beta-cell receptors for GLP-1, both of which are related to the insulin production. MATERIALS AND METHODS: We examined mRNA levels in islets from the DiViD and nPOD studies, performed genetic association analyses, and histologically investigated pericytes in the islets for sulfatide. RESULTS: Polymorphisms of the gene encoding the CERS6 enzyme responsible for synthesising dihydroceramide, a precursor to sulfatide, are associated with random blood glucose values in non-diabetic persons. This fits well with our finding of sulfatide in pericytes in the islets, which regulates the capillary blood flow in the islets of Langerhans, which is important for oxygen supply to insulin production. In the islets of newly diagnosed T1D patients, we observed low levels of GLP-1 receptors; this may explain the insulin resistance in their beta cells and their low insulin production. In T2D patients, we identified associated polymorphisms in both CERS2 and CERS6. CONCLUSIONS: Here, we describe several polymorphisms in sulfatide enzymes related to blood glucose levels and HbA1c in non-diabetic individuals. Islet pericytes from such persons contain sulfatide. Furthermore, low insulin secretion in newly diagnosed T1D may be explained by beta-cell insulin resistance due to low levels of GLP-1 receptors.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Ilhotas Pancreáticas , Humanos , Glicemia , Esfingolipídeos , Resistência à Insulina/genética , Pericitos , Sulfoglicoesfingolipídeos , Insulina , Insulina Regular Humana , Diabetes Mellitus Tipo 2/genética , Peptídeo 1 Semelhante ao Glucagon , Glucose
2.
Diabetes Metab Res Rev ; 39(7): e3678, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37395313

RESUMO

AIMS: To investigate if HLA risk haplotypes and HbA1c levels are associated with the expression levels of innate anti-viral immune pathway genes in type 1 diabetes. MATERIALS AND METHODS: We investigated RNA expression levels of innate anti-viral immune pathway genes in laser-dissected islets from two to five tissue sections per donor from the Diabetes Virus Detection study and the network of Pancreatic Organ Donors in relation to HLA risk haplotypes (non-predisposed and predisposed) and HbA1c levels (normal, elevated, and high). RESULTS: The expression of innate anti-viral immune genes (TLR7, OAS1, OAS3 etc.) was significantly increased in individuals with predisposing vs non-predisposing HLA haplotypes. Also, the expression of several of the innate anti-viral immune genes from the HLA risk haplotype analysis was significantly increased in the group with high vs normal HbA1c. Furthermore, the gene expression of OAS2 was significantly increased in the group with high HbA1c vs elevated HbA1c. CONCLUSIONS: Expression of innate anti-viral immune pathway genes was increased in individuals with predisposing HLA risk haplotypes and those with high HbA1c. This indicates that type 1 diabetes might well begin with alterations in innate anti-viral immunity, and already at this stage be associated with HLA risk haplotypes.

3.
Diabetologia ; 64(8): 1805-1815, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33973017

RESUMO

AIMS/HYPOTHESIS: The incidence of type 1 diabetes is increasing more rapidly than can be explained by genetic drift. Viruses may play an important role in the disease, as they seem to activate the 2'-5'-linked oligoadenylate (2'-5'A) pathway of the innate antiviral immune system. Our aim was to investigate this possibility. METHODS: Innate antiviral immune pathways were searched for type 1 diabetes-associated polymorphisms using genome-wide association study data. SNPs within ±250kb flanking regions of the transcription start site of 64 genes were examined. These pathways were also investigated for type 1 diabetes-associated RNA expression profiles using laser-dissected islets from two to five tissue sections per donor from the Diabetes Virus Detection (DiViD) study and the network of Pancreatic Organ Donors (nPOD). RESULTS: We found 27 novel SNPs in genes nominally associated with type 1 diabetes. Three of those SNPs were located upstream of the 2'-5'A pathway, namely SNP rs4767000 (p = 1.03 × 10-9, OR 1.123), rs1034687 (p = 2.16 × 10-7, OR 0.869) and rs739744 (p = 1.03 × 10-9, OR 1.123). We also identified a large group of dysregulated islet genes in relation to type 1 diabetes, of which two were novel. The most aberrant genes were a group of IFN-stimulated genes. Of those, the following distinct pathways were targeted by the dysregulation (compared with the non-diabetic control group): OAS1 increased by 111% (p < 1.00 × 10-4, 95% CI -0.43, -0.15); MX1 increased by 142% (p < 1.00 × 10-4, 95% CI -0.52, -0.22); and ISG15 increased by 197% (p = 2.00 × 10-4, 95% CI -0.68, -0.18). CONCLUSIONS/INTERPRETATION: We identified a genetic predisposition in the 2'-5'A pathway that potentially contributes to dysregulation of the innate antiviral immune system in type 1 diabetes. This study describes a potential role for the 2'-5'A pathway and other components of the innate antiviral immune system in beta cell autoimmunity.


Assuntos
Nucleotídeos de Adenina/genética , Diabetes Mellitus Tipo 1/genética , Regulação da Expressão Gênica/fisiologia , Predisposição Genética para Doença , Imunidade Inata/genética , Oligorribonucleotídeos/genética , Polimorfismo de Nucleotídeo Único/genética , Viroses/imunologia , Adulto , Antivirais/uso terapêutico , Diabetes Mellitus Tipo 1/virologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Viroses/tratamento farmacológico , Adulto Jovem
4.
Curr Diab Rep ; 19(12): 159, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31820163

RESUMO

PURPOSE OF REVIEW: Hyperexpression of classical HLA class I (HLA-I) molecules in insulin-containing islets has become a widely accepted hallmark of type 1 diabetes pathology. In comparison, relatively little is known about the expression, function and role of non-classical subtypes of HLA-I. This review focuses on the current understanding of the non-classical HLA-I subtypes: HLA-E, HLA-F and HLA-G, within and outside the field of type 1 diabetes, and considers the possible impacts of these molecules on disease etiology. RECENT FINDINGS: Evidence is growing to suggest that non-classical HLA-I proteins are upregulated, both at the RNA and protein levels in the pancreas of individuals with recent-onset type 1 diabetes. Moreover, associations between non-classical HLA-I genotypes and age at onset of type 1 diabetes have been reported in some studies. As with classical HLA-I, it is likely that hyperexpression of non-classical HLA-I is driven by the release of diffusible interferons by stressed ß cells (potentially driven by viral infection) and exacerbated by release of cytokines from infiltrating immune cells. Non-classical HLA-I proteins predominantly (but not exclusively) transduce negative signals to immune cells infiltrating at the site of injury/inflammation. We propose a model in which the islet endocrine cells, through expression of non-classical HLA-I are fighting back against the infiltrating immune cells. By inhibiting the activity and function on NK, B and select T cells, the non-classical HLA-I, proteins will reduce the non-specific bystander effects of inflammation, while at the same time still allowing the targeted destruction of ß cells by specific islet-reactive CD8+ T cells.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Antígenos de Histocompatibilidade Classe I/biossíntese , Antígenos de Histocompatibilidade Classe I/imunologia , Ilhotas Pancreáticas/imunologia , Linfócitos B/imunologia , Antígenos CD8/imunologia , Diabetes Mellitus Tipo 1/fisiopatologia , Antígenos HLA-G/biossíntese , Humanos , Inflamação/imunologia , Células Secretoras de Insulina/imunologia , Ilhotas Pancreáticas/fisiopatologia , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Regulação para Cima , Antígenos HLA-E
5.
Diabetologia ; 61(7): 1650-1661, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29671030

RESUMO

AIMS/HYPOTHESIS: Sphingolipids play important roles in beta cell physiology, by regulating proinsulin folding and insulin secretion and in controlling apoptosis, as studied in animal models and cell cultures. Here we investigate whether sphingolipid metabolism may contribute to the pathogenesis of human type 1 diabetes and whether increasing the levels of the sphingolipid sulfatide would prevent models of diabetes in NOD mice. METHODS: We examined the amount and distribution of sulfatide in human pancreatic islets by immunohistochemistry, immunofluorescence and electron microscopy. Transcriptional analysis was used to evaluate expression of sphingolipid-related genes in isolated human islets. Genome-wide association studies (GWAS) and a T cell proliferation assay were used to identify type 1 diabetes related polymorphisms and test how these affect cellular islet autoimmunity. Finally, we treated NOD mice with fenofibrate, a known activator of sulfatide biosynthesis, to evaluate the effect on experimental autoimmune diabetes development. RESULTS: We found reduced amounts of sulfatide, 23% of the levels in control participants, in pancreatic islets of individuals with newly diagnosed type 1 diabetes, which were associated with reduced expression of enzymes involved in sphingolipid metabolism. Next, we discovered eight gene polymorphisms (ORMDL3, SPHK2, B4GALNT1, SLC1A5, GALC, PPARD, PPARG and B4GALT1) involved in sphingolipid metabolism that contribute to the genetic predisposition to type 1 diabetes. These gene polymorphisms correlated with the degree of cellular islet autoimmunity in a cohort of individuals with type 1 diabetes. Finally, using fenofibrate, which activates sulfatide biosynthesis, we completely prevented diabetes in NOD mice and even reversed the disease in half of otherwise diabetic animals. CONCLUSIONS/INTERPRETATION: These results indicate that islet sphingolipid metabolism is abnormal in type 1 diabetes and suggest that modulation may represent a novel therapeutic approach. DATA AVAILABILITY: The RNA expression data is available online at https://www.dropbox.com/s/93mk5tzl5fdyo6b/Abnormal%20islet%20sphingolipid%20metabolism%20in%20type%201%20diabetes%2C%20RNA%20expression.xlsx?dl=0 . A list of SNPs identified is available at https://www.dropbox.com/s/yfojma9xanpp2ju/Abnormal%20islet%20sphingolipid%20metabolism%20in%20type%201%20diabetes%20SNP.xlsx?dl=0 .


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Sulfoglicoesfingolipídeos/metabolismo , Adulto , Animais , Autoimunidade , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Modelos Animais de Doenças , Feminino , Fenofibrato/farmacologia , Regulação Enzimológica da Expressão Gênica , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/ultraestrutura , Metabolismo dos Lipídeos/genética , Ativação Linfocitária , Masculino , Camundongos Endogâmicos NOD , Polimorfismo Genético , Linfócitos T/imunologia , Linfócitos T/metabolismo
6.
Exp Eye Res ; 155: 64-74, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27989757

RESUMO

We report on a novel autoantigen expressed in human macular tissues, identified following an initial Western blot (WB)-based screening of sera from subjects with age-related macular degeneration (AMD) for circulating auto-antibodies (AAbs) recognizing macular antigens. Immunoprecipitation, 2D-gel electrophoresis (2D-GE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), direct enzyme-linked immunosorbent assays (ELISA), WBs, immunohistochemistry (IHC), human primary and ARPE-19 immortalized cell cultures were used to characterize this novel antigen. An approximately 40-kDa autoantigen in AMD was identified as the scavenger receptor CD5 antigen-like protein (CD5L), also known as apoptosis inhibitor of macrophage (AIM). CD5L/AIM was localized to human RPE by IHC and WB methods and to retinal microglial cells by IHC. ELISAs with recombinant CD5L/AIM on a subset of AMD sera showed a nearly 2-fold higher anti-CD5L/AIM reactivity in AMD vs. Control sera (p = 0.000007). Reactivity ≥0.4 was associated with 18-fold higher odds of having AMD (χ2 = 21.42, p = 0.00063). Circulating CD5L/AIM levels were also nearly 2-fold higher in AMD sera compared to controls (p = 0.0052). The discovery of CD5L/AIM expression in the RPE and in retinal microglial cells adds to the known immunomodulatory roles of these cells in the retina. The discovery of AAbs recognizing CD5L/AIM identifies a possible novel disease biomarker and suggest a potential role for CD5L/AIM in the pathogenesis of AMD in situ. The possible mechanisms via which anti-CD5L/AIM AAbs may contribute to AMD pathogenesis are discussed. In particular, since CD5L is known to stimulate autophagy and to participate in oxidized LDL uptake in macrophages, we propose that anti-CD5L/AIM auto-antibodies may play a role in drusen biogenesis and inflammatory RPE damage in AMD.


Assuntos
Autoimunidade , Antígenos CD5/biossíntese , Degeneração Macular/metabolismo , Microglia/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Autoantígenos , Western Blotting , Linhagem Celular , Eletroforese em Gel Bidimensional , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica , Macrófagos/imunologia , Macrófagos/metabolismo , Degeneração Macular/patologia , Masculino , Microglia/patologia , Microscopia Confocal , Pessoa de Meia-Idade , Retina/patologia , Epitélio Pigmentado da Retina/patologia , Espectrometria de Massas em Tandem
7.
Diabetologia ; 59(11): 2448-2458, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27506584

RESUMO

AIMS/HYPOTHESIS: Human pancreatic beta cells may be complicit in their own demise in type 1 diabetes, but how this occurs remains unclear. One potentially contributing factor is hyperexpression of HLA class I antigens. This was first described approximately 30 years ago, but has never been fully characterised and was recently challenged as artefactual. Therefore, we investigated HLA class I expression at the protein and RNA levels in pancreases from three cohorts of patients with type 1 diabetes. The principal aims were to consider whether HLA class I hyperexpression is artefactual and, if not, to determine the factors driving it. METHODS: Pancreas samples from type 1 diabetes patients with residual insulin-containing islets (n = 26) from the Network for Pancreatic Organ donors with Diabetes (nPOD), Diabetes Virus Detection study (DiViD) and UK recent-onset type 1 diabetes collections were immunostained for HLA class I isoforms, signal transducer and activator of transcription 1 (STAT1), NLR family CARD domain containing 5 (NLRC5) and islet hormones. RNA was extracted from islets isolated by laser-capture microdissection from nPOD and DiViD samples and analysed using gene-expression arrays. RESULTS: Hyperexpression of HLA class I was observed in the insulin-containing islets of type 1 diabetes patients from all three tissue collections, and was confirmed at both the RNA and protein levels. The expression of ß2-microglobulin (a second component required for the generation of functional HLA class I complexes) was also elevated. Both 'classical' HLA class I isoforms (i.e. HLA-ABC) as well as a 'non-classical' HLA molecule, HLA-F, were hyperexpressed in insulin-containing islets. This hyperexpression did not correlate with detectable upregulation of the transcriptional regulator NLRC5. However, it was strongly associated with increased STAT1 expression in all three cohorts. Islet hyperexpression of HLA class I molecules occurred in the insulin-containing islets of patients with recent-onset type 1 diabetes and was also detectable in many patients with disease duration of up to 11 years, declining thereafter. CONCLUSIONS/INTERPRETATION: Islet cell HLA class I hyperexpression is not an artefact, but is a hallmark in the immunopathogenesis of type 1 diabetes. The response is closely associated with elevated expression of STAT1 and, together, these occur uniquely in patients with type 1 diabetes, thereby contributing to their selective susceptibility to autoimmune-mediated destruction.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Ilhotas Pancreáticas/metabolismo , Diabetes Mellitus Tipo 1/patologia , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Insulina/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Pâncreas/metabolismo , Fator de Transcrição STAT1/metabolismo
8.
Mass Spectrom Rev ; 39(5-6): 452, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31663637
9.
Heart Fail Rev ; 21(2): 191-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26872676

RESUMO

Cardiomyocytes must be responsive to demands placed on the heart's contractile work as a muscular pump. In turn, myocyte size is largely dependent on the workload they perform. Both hypertrophied and atrophic myocytes are found in the normal and diseased ventricle. Individual myocytes become atrophic when encumbered by fibrillar collagen, such as occurs at sites of fibrosis. The mechanisms include: (a) being immobilized and subject to disuse with ensuing protein degradation mediated by redox-sensitive, proteolytic ligases of the ubiquitin-proteasome system and (b) dedifferentiated re-expressing fetal genes induced by low intracellular triiodothyronine (T3) via thyroid hormone receptor ß1. This myocyte-selective, low T3 state is a consequence of heterocellular signaling emanating from juxtaposed scar tissue myofibroblasts and their secretome with its de novo generation of angiotensin II. In a paracrine manner, angiotensin II promotes myocyte Ca(2+) entry and subsequent Ca(2+) overload with ensuing oxidative stress that overwhelms antioxidant defenses to activate deiodinase-3 and its enzymatic degradation of T3. In the failing heart, atrophic myocytes represent an endogenous population of viable myocytes which could be rescued to augment contractile mass, reduce systolic wall stress (afterload) and recover ventricular function. Experimental studies have shown the potential for the rescue and recovery of atrophic myocytes in rebuilding the myocardium--a method complementary to today's quest in regenerating myocardium using progenitor cells.


Assuntos
Angiotensina II/metabolismo , Antioxidantes/farmacologia , Insuficiência Cardíaca/fisiopatologia , Miócitos Cardíacos/patologia , Miofibroblastos/metabolismo , Função Ventricular , Humanos , Contração Miocárdica , Estresse Oxidativo , Transdução de Sinais
10.
Mol Cell Biochem ; 389(1-2): 159-67, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24395194

RESUMO

Mitochondria are complex organelles essential to cardiomyocyte survival. Protein phosphorylation is emerging as a key regulator of mitochondrial function. In the study reported here, we analyzed subsarcolemmal (SSM) mitochondria harvested from rats who have received 4 weeks of aldosterone/salt treatment to simulate the neurohormonal profile of human congestive heart failure. Our objective was to obtain an initial qualitative inventory of the phosphoproteins in this biologic system. SSM mitochondria were harvested, and the phosphoproteome was analyzed with a gel-free bioanalytical platform. Mitochondrial proteins were digested with trypsin, and the digests were enriched for phosphopeptides with immobilized metal ion affinity chromatography. The phosphopeptides were analyzed by ion trap liquid chromatography-tandem mass spectrometry, and the phosphoproteins identified via database searches. Based on MS/MS and MS(3) data, we characterized a set of 42 phosphopeptides that encompassed 39 phosphorylation sites. These peptides mapped to 26 proteins, for example, long-chain specific acyl-CoA dehydrogenase, Complex III subunit 6, and mitochondrial import receptor TOM70. Collectively, the characterized phosphoproteins belong to diverse functional modules, including bioenergetic pathways, protein import machinery, and calcium handling. The phosphoprotein panel discovered in this study provides a foundation for future differential phosphoproteome profiling toward an integrated understanding of the role of mitochondrial phosphorylation in heart failure.


Assuntos
Insuficiência Cardíaca/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Animais , Masculino , Mapeamento de Peptídeos/métodos , Peptídeos/metabolismo , Proteômica/métodos , Ratos , Ratos Sprague-Dawley
11.
J Cardiovasc Pharmacol ; 64(4): 393-400, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25291496

RESUMO

Neurohormonal activation with attendant aldosteronism contributes to the clinical appearance of congestive heart failure (CHF). Aldosteronism is intrinsically coupled to Zn and Ca dyshomeostasis, in which consequent hypozincemia compromises Zn homeostasis and Zn-based antioxidant defenses that contribute to the CHF prooxidant phenotype. Ionized hypocalcemia leads to secondary hyperparathyroidism with parathyroid hormone-mediated Ca overloading of diverse cells, including cardiomyocytes. When mitochondrial Ca overload exceeds a threshold, myocyte necrosis follows. The reciprocal regulation involving cytosolic free [Zn]i as antioxidant and [Ca]i as prooxidant can be uncoupled in favor of Zn-based antioxidant defenses. Increased [Zn]i acts as a multifaceted antioxidant by: (1) inhibiting Ca entry through L-type channels and hence cardioprotectant from the Ca-driven mitochondriocentric signal-transducer effector pathway to nonischemic necrosis, (2) serving as catalytic regulator of Cu/Zn-superoxide dismutase, and (3) activating its cytosolic sensor, metal-responsive transcription factor that regulates the expression of relevant antioxidant defense genes. Albeit present in subnanomolar range, increased cytosolic free [Zn]i enhances antioxidant capacity that confers cardioprotection. It can be achieved exogenously by ZnSO4 supplementation or endogenously using a ß3-receptor agonist (eg, nebivolol) that enhances NO generation to release inactive cytosolic Zn bound to metallothionein. By recognizing the pathophysiologic relevance of Zn dyshomeostasis in the prooxidant CHF phenotype and by exploiting the pharmacophysiologic potential of [Zn]i as antioxidant, vulnerable cardiomyocytes under assault from neurohormonal activation can be protected and the myocardium spared from adverse structural remodeling.


Assuntos
Antioxidantes/uso terapêutico , Cardiotônicos/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Zinco/uso terapêutico , Animais , Antioxidantes/administração & dosagem , Antioxidantes/metabolismo , Cálcio/metabolismo , Cardiotônicos/administração & dosagem , Cardiotônicos/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Homeostase , Humanos , Necrose , Zinco/administração & dosagem , Zinco/metabolismo
12.
J Cardiovasc Pharmacol ; 64(3): 237-46, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24785345

RESUMO

With the perspective of functional myocardial regeneration, we investigated small cardiomyocytes bordering on microdomains of fibrosis, where they are dedifferentiated re-expressing fetal genes, and determined: (1) whether they are atrophied segments of the myofiber syncytium, (2) their redox state, (3) their anatomic relationship to activated myofibroblasts (myoFb), given their putative regulatory role in myocyte dedifferentiation and redifferentiation, (4) the relevance of proteolytic ligases of the ubiquitin-proteasome system as a mechanistic link to their size, and (5) whether they could be rescued from their dedifferentiated phenotype. Chronic aldosterone/salt treatment (ALDOST) was invoked, where hypertensive heart disease with attendant myocardial fibrosis creates the fibrillar collagen substrate for myocyte sequestration, with propensity for disuse atrophy, activated myoFb, and oxidative stress. To address phenotype rescue, 4 weeks of ALDOST was terminated followed by 4 weeks of neurohormonal withdrawal combined with a regimen of exogenous antioxidants, ZnSO4, and nebivolol (assisted recovery). Compared with controls, at 4 weeks of ALDOST, we found small myocytes to be: (1) sequestered by collagen fibrils emanating from microdomains of fibrosis and representing atrophic segments of the myofiber syncytia, (2) dedifferentiated re-expressing fetal genes (ß-myosin heavy chain and atrial natriuretic peptide), (3) proximal to activated myoFb expressing α-smooth muscle actin microfilaments and angiotensin-converting enzyme, (4) expressing reactive oxygen species and nitric oxide with increased tissue 8-isoprostane, coupled to ventricular diastolic and systolic dysfunction, and (5) associated with upregulated redox-sensitive proteolytic ligases MuRF1 and atrogin-1. In a separate study, we did not find evidence of myocyte replication (BrdU labeling) or expression of stem cell antigen (c-Kit) at weeks 1-4 ALDOST. Assisted recovery caused complete disappearance of myoFb from sites of fibrosis with redifferentiation of these myocytes, loss of oxidative stress, and ubiquitin-proteasome system activation, with restoration of nitric oxide and improved ventricular function. Thus, small dedifferentiated myocytes bordering on microdomains of fibrosis can re-differentiate and represent a potential source of autologous cells for functional myocardial regeneration.


Assuntos
Antioxidantes/metabolismo , Desdiferenciação Celular/fisiologia , Diferenciação Celular/fisiologia , Miócitos Cardíacos/metabolismo , Aldosterona/farmacologia , Animais , Antioxidantes/administração & dosagem , Fibrose , Hipertensão/fisiopatologia , Masculino , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Miofibroblastos/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Regeneração/fisiologia , Ubiquitina/metabolismo
13.
medRxiv ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39314969

RESUMO

Aims/hypothesis: The nPOD-Virus group collaboratively applied innovative technologies to detect and sequence viral RNA in pancreas and other tissues from organ donors with type 1 diabetes. These analyses involved the largest number of pancreas samples collected to date. Methods: We analysed pancreas, spleen, pancreatic lymph nodes, and duodenum samples from the following donor groups: a) donors with type 1 diabetes (n=71), with (n=35) or without (n=36) insulin-containing islets, (b) donors with single or double islet autoantibody positivity without diabetes (n=22) and c) autoantibody-negative donors without diabetes (control donors) (n=74). Five research laboratories participated in this collaborative effort using approaches for unbiased discovery of RNA viruses (two RNA-Seq platforms), targeted detection of Enterovirus A-D species using RT-PCR, and tests for virus growth in cell-culture. Results: Direct RNA-Seq did not detect virus signal in pancreas samples, whereas RT-PCR detected enterovirus RNA confirmed by sequencing in low amounts in pancreas samples in three of the five donor groups, namely donors with type 1 diabetes with insulin-containing islets, 16% (5/32) donors being positive, donors with single islet autoantibody positivity with 53% (8/15) donors being positive, and non-diabetic donors with 8% (4/49) being enterovirus RNA positive. Detection of enterovirus RNA was significantly more frequent in single islet autoantibody-positive donors compared to donors with type 1 diabetes with insulin-deficient islets (p-value <0.001) and control donors (p-value 0.004). In some donors, pancreatic lymph nodes were also positive. RT-PCR detected enterovirus RNA also in spleen of a small number of donors and virus enrichment in susceptible cell lines before RT-PCR resulted in much higher rate in spleen positivity, particularly in donors with type 1 diabetes. Interestingly, the enterovirus strains detected did not cause a typical lytic infection, possibly reflecting their persistence-prone nature. Conclusions/interpretation: This was the largest coordinated effort to examine the presence of enterovirus RNA in pancreas of organ donors with type 1 diabetes, using a multitude of assays. These findings are consistent with the notion that both the subjects with type 1 diabetes and those with islet autoantibodies may carry a low-grade enterovirus infection in the pancreas and lymphoid tissues.

14.
Mol Pharm ; 10(1): 77-89, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23215004

RESUMO

Mesenchymal stem cells (MSCs) are multipotent adult stem cells which have self-renewal capacity and differentiation potential into several mesenchymal lineages including bones, cartilages, adipose tissues and tendons. MSCs may repair tissue injuries and prevent immune cell activation and proliferation. Immunomodulation and secretion of growth factors by MSCs have led to realizing the true potential of MSC-based cell therapy. The use of MSCs as immunomodulators has been explored in cell/organ transplant, tissue repair, autoimmune diseases, and prevention of graft vs host disease (GVHD). This review focuses on the clinical applications of MSC-based cell therapy, with particular emphasis on islet transplantation for treating type I diabetes.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Animais , Humanos , Imunomodulação/imunologia
15.
Mol Cell Biochem ; 379(1-2): 243-53, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23716180

RESUMO

Cardiac oxidative stress is developed following myocardial infarction (MI) particularly in the first week of MI. The influence of reactive oxygen species (ROS) on gene expression profiling and molecular pathways in the infarcted myocardium remains uncertain and is explored in the present study. Rats with MI were treated with or without antioxidants for 1 week. Normal rats served as controls. Cardiac oxidative stress and gene profiling were investigated. Compared to normal hearts, malondialdehyde, a marker of oxidative stress, was significantly increased in the infarcted myocardium, which was significantly suppressed by antioxidants. Microarray assay showed that over a thousand genes were differentially expressed in the infarcted myocardium. Antioxidants significantly altered the expression of 159 genes compared to untreated MI rats. Ingenuity pathway analysis indicated that multiple pathway networks were affected by antioxidants, including those related to cell movement, growth/development, death, and inflammatory/fibrotic responses. IPA further identified that these changes were primarily related to NFκB, p38 MAPK, and ERκ1/2 pathways. Hub genes were identified in the associated gene networks. This study reveals the gene networks associated with cardiac oxidative stress postMI. These observations indicate that ROS regulate various molecular and cellular actions related to cardiac repair/remodeling through multiple gene networks.


Assuntos
Infarto do Miocárdio/metabolismo , Estresse Oxidativo , Transcriptoma , Acetofenonas/farmacologia , Animais , Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Masculino , Malondialdeído/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Marcadores de Spin , Função Ventricular
16.
J Cardiovasc Pharmacol ; 62(5): 445-51, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23921314

RESUMO

Cardiomyocyte necrosis with attendant microscopic scarring is a pathological feature of human hypertensive heart disease (HHD). Understanding the pathophysiological origins of necrosis is integral to its prevention. In a rat model of HHD associated with aldosterone/salt treatment (ALDOST), myocyte necrosis is attributable to oxidative stress induced by cytosolic-free [Ca]i and mitochondrial [Ca]m overloading in which the rate of reactive oxygen species generation overwhelms their rate of detoxification by endogenous Zn-based antioxidant defenses. We hypothesized that nebivolol (Neb), unlike another ß1 adrenergic receptor antagonist atenolol (Aten), would have a multifaceted antioxidant potential based on its dual property as a ß3 receptor agonist, which activates endothelial nitric oxide synthase to stimulate nitric oxide (NO) generation. NO promotes the release of cytosolic Zn sequestered inactive by its binding protein, metallothionein. Given the reciprocal regulation between these cations, increased [Zn]i reduces Ca entry and attendant rise in [Ca]i and [Ca]m. Herein, we examined the antioxidant and cardioprotectant properties of Neb and Aten in rats receiving 4 weeks ALDOST. Compared with untreated age-/sex-matched controls, ALDOST alone or ALDOST with Aten, Neb cotreatment induced endothelial nitric oxide synthase activation, NO generation and a marked increase in [Zn]i with associated decline in [Ca]i and [Ca]m. Attendant antioxidant profile at subcellular and cellular levels included attenuation of mitochondrial H2O2 production and lipid peroxidation expressed as reduced 8-isoprostane concentrations in both mitochondria and cardiac tissue. Myocyte salvage was expressed as reduced microscopic scarring and tissue collagen volume fraction. Neb is a multifaceted antioxidant with unique properties as cardioprotectant in HHD.


Assuntos
Antioxidantes/farmacologia , Benzopiranos/farmacologia , Cardiotônicos/farmacologia , Etanolaminas/farmacologia , Hipertensão/tratamento farmacológico , Aldosterona/farmacologia , Animais , Cálcio/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Modelos Animais de Doenças , Humanos , Peróxido de Hidrogênio/metabolismo , Hipertensão/fisiopatologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Nebivolol , Necrose/patologia , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Zinco/metabolismo
17.
J Cardiovasc Pharmacol ; 62(6): 497-506, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24084216

RESUMO

Cardinal pathological features of hypertensive heart disease (HHD) include not only hypertrophied cardiomyocytes and foci of scattered microscopic scarring, a footprint of prior necrosis, but also small myocytes ensnared by fibrillar collagen where disuse atrophy with protein degradation would be predicted. Whether atrophic signaling is concordant with the appearance of HHD and involves oxidative and endoplasmic reticulum (ER) stress remains unexplored. Herein, we examine these possibilities focusing on the left ventricle and cardiomyocytes harvested from hypertensive rats receiving 4 weeks aldosterone/salt treatment (ALDOST) alone or together with ZnSO4, a nonvasoactive antioxidant, with the potential to attenuate atrophy and optimize hypertrophy. Compared with untreated age-/sex-/strain-matched controls, ALDOST was accompanied by (1) left ventricle hypertrophy with preserved systolic function; (2) concordant cardiomyocyte atrophy (<1000 µm²) found at sites bordering on fibrosis where they were reexpressing ß-myosin heavy chain; and (3) upregulation of ubiquitin ligases, muscle RING-finger protein-1 and atrogin-1, and elevated 8-isoprostane and unfolded protein ER response with messenger RNA upregulation of stress markers. ZnSO4 cotreatment reduced lipid peroxidation, fibrosis, and the number of atrophic myocytes, together with a further increase in cell area and width of atrophied and hypertrophied myocytes, and improved systolic function but did not attenuate elevated blood pressure. We conclude that atrophic signaling, concordant with hypertrophy, occurs in the presence of a reparative fibrosis and induction of oxidative and ER stress at sites of scarring where myocytes are atrophied. ZnSO4 cotreatment in HHD with ALDOST attenuates the number of atrophic myocytes, optimizes size of atrophied and hypertrophied myocytes, and improves systolic function.


Assuntos
Modelos Animais de Doenças , Hipertensão/metabolismo , Hipertrofia Ventricular Esquerda/etiologia , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Hipertensão/tratamento farmacológico , Hipertensão/patologia , Hipertensão/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Masculino , Proteínas Musculares/agonistas , Proteínas Musculares/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteínas Ligases SKP Culina F-Box/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética , Regulação para Cima/efeitos dos fármacos
18.
Sci Rep ; 13(1): 12948, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558746

RESUMO

Hypoglycemia in type 1 diabetes associates with changes in the pancreatic islet α cells, where the receptor for advanced glycation end products (RAGE) is highly expressed. This study compared islet RAGE expression in donors without diabetes, those at risk of, and those with type 1 diabetes. Laser-dissected islets were subject to RNA bioinformatics and adjacent pancreatic tissue were assessed by confocal microscopy. We found that islets from type 1 diabetes donors had differential expression of the RAGE gene (AGER) and its correlated genes, based on glucagon expression. Random forest machine learning revealed that AGER was the most important predictor for islet glucagon levels. Conversely, a generalized linear model identified that glucagon expression could be predicted by expression of RAGE signaling molecules, its ligands and enzymes that create or clear RAGE ligands. Confocal imaging co-localized RAGE, its ligands and signaling molecules to the α cells. Half of the type 1 diabetes cohort comprised of adolescents and a patient with history of hypoglycemia-all showed an inverse relationship between glucagon and RAGE. These data confirm an association between glucagon and islet RAGE, its ligands and signaling pathways in type 1 diabetes, which warrants functional investigation into a role for RAGE in hypoglycemia.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Glucagon , Hipoglicemia , Receptor para Produtos Finais de Glicação Avançada , Adolescente , Humanos , Diabetes Mellitus Tipo 1/genética , Glucagon , Células Secretoras de Glucagon/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Ligantes , Receptor para Produtos Finais de Glicação Avançada/metabolismo
19.
Pflugers Arch ; 464(1): 123-31, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22328074

RESUMO

The survival of cardiomyocytes must be ensured as the myocardium adjusts to a myriad of competing physiological and pathophysiological demands. A significant loss of these contractile cells, together with their replacement by stiff fibrillar collagen in the form of fibrous tissue accounts for a transition from a usually efficient muscular pump into one that is failing. Cellular and subcellular mechanisms involved in the pathogenic origins of cardiomyocyte cell death have long been of interest. This includes programmed molecular pathways to either necrosis or apoptosis, which are initiated from ischemic or nonischemic origins. Herein, we focus on the central role played by a mitochondriocentric signal-transducer-effector pathway to nonischemic cardiomyocyte necrosis, which is common to acute and chronic stressor states. We begin by building upon the hypothesis advanced by Albrecht Fleckenstein and coworkers some 40 years ago based on the importance of calcitropic hormone-mediated intracellular Ca(2+) overloading, which predominantly involves subsarcolemmal mitochondria and is the signal to pathway activation. Other pathway components, which came to be recognized in subsequent years, include the induction of oxidative stress and opening of the mitochondrial inner membrane permeability transition pore. The ensuing loss of cardiomyocytes and consequent replacement fibrosis, or scarring, represents a disease of adaptation and a classic example of when homeostasis begets dyshomeostasis.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Estresse Fisiológico , Animais , Apoptose , Fibrose/metabolismo , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Miócitos Cardíacos/patologia , Necrose , Zinco/metabolismo
20.
Am J Physiol Heart Circ Physiol ; 303(4): H486-95, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22730385

RESUMO

The congestive heart failure (CHF) syndrome with soft tissue wasting, or cachexia, has its pathophysiologic origins rooted in neurohormonal activation. Mechanical cardiocirculatory assistance reveals the potential for reverse remodeling and recovery from CHF, which has been attributed to device-based hemodynamic unloading whereas the influence of hormonal withdrawal remains uncertain. This study addresses the signaling pathways induced by chronic aldosteronism in normal heart and skeletal muscle at organ, cellular/subcellular, and molecular levels, together with their potential for recovery (Recov) after its withdrawal. Eight-week-old male Sprague-Dawley rats were examined at 4 wk of aldosterone/salt treatment (ALDOST) and following 4-wk Recov. Compared with untreated, age-/sex-/strain-matched controls, ALDOST was accompanied by 1) a failure to gain weight, reduced muscle mass with atrophy, and a heterogeneity in cardiomyocyte size across the ventricles, including hypertrophy and atrophy at sites of microscopic scarring; 2) increased cardiomyocyte and mitochondrial free Ca(2+), coupled to oxidative stress with increased H(2)O(2) production and 8-isoprostane content, and increased opening potential of the mitochondrial permeability transition pore; 3) differentially expressed genes reflecting proinflammatory myocardial and catabolic muscle phenotypes; and 4) reversal to or toward recovery of these responses with 4-wk Recov. Aldosteronism in rats is accompanied by cachexia and leads to an adverse remodeling of the heart and skeletal muscle at organ, cellular/subcellular, and molecular levels. However, evidence presented herein implicates that these tissues retain their inherent potential for recovery after complete hormone withdrawal.


Assuntos
Caquexia/etiologia , Insuficiência Cardíaca/etiologia , Hiperaldosteronismo/complicações , Músculo Esquelético/patologia , Miocárdio/patologia , Remodelação Ventricular , Animais , Caquexia/genética , Caquexia/metabolismo , Caquexia/patologia , Caquexia/fisiopatologia , Cálcio/metabolismo , Cardiomegalia/etiologia , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Dinoprosta/análogos & derivados , Dinoprosta/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Peróxido de Hidrogênio/metabolismo , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , Masculino , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Necrose , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa