Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 16(4): 354-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25729923

RESUMO

Interleukin 37 (IL-37) and IL-1R8 (SIGIRR or TIR8) are anti-inflammatory orphan members of the IL-1 ligand family and IL-1 receptor family, respectively. Here we demonstrate formation and function of the endogenous ligand-receptor complex IL-37-IL-1R8-IL-18Rα. The tripartite complex assembled rapidly on the surface of peripheral blood mononuclear cells upon stimulation with lipopolysaccharide. Silencing of IL-1R8 or IL-18Rα impaired the anti-inflammatory activity of IL-37. Whereas mice with transgenic expression of IL-37 (IL-37tg mice) with intact IL-1R8 were protected from endotoxemia, IL-1R8-deficient IL-37tg mice were not. Proteomic and transcriptomic investigations revealed that IL-37 used IL-1R8 to harness the anti-inflammatory properties of the signaling molecules Mer, PTEN, STAT3 and p62(dok) and to inhibit the kinases Fyn and TAK1 and the transcription factor NF-κB, as well as mitogen-activated protein kinases. Furthermore, IL-37-IL-1R8 exerted a pseudo-starvational effect on the metabolic checkpoint kinase mTOR. IL-37 thus bound to IL-18Rα and exploited IL-1R8 to activate a multifaceted intracellular anti-inflammatory program.


Assuntos
Subunidade alfa de Receptor de Interleucina-18/imunologia , Interleucina-1/imunologia , Leucócitos Mononucleares/imunologia , Receptores de Interleucina-1/imunologia , Transdução de Sinais/imunologia , Animais , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-1/genética , Subunidade alfa de Receptor de Interleucina-18/antagonistas & inibidores , Subunidade alfa de Receptor de Interleucina-18/genética , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/patologia , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/imunologia , Camundongos , Camundongos Transgênicos , NF-kappa B/genética , NF-kappa B/imunologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/imunologia , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/imunologia , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/imunologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/imunologia , Receptores de Interleucina-1/antagonistas & inibidores , Receptores de Interleucina-1/deficiência , Receptores de Interleucina-1/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia , c-Mer Tirosina Quinase
2.
Nat Immunol ; 15(6): 538-45, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24777530

RESUMO

Double-stranded DNA (dsDNA) in the cytoplasm triggers the production of interleukin 1ß (IL-1ß) as an antiviral host response, and deregulation of the pathways involved can promote inflammatory disease. Here we report a direct cytosolic interaction between the DNA-damage sensor Rad50 and the innate immune system adaptor CARD9. Transfection of dendritic cells with dsDNA or infection of dendritic cells with a DNA virus induced the formation of dsDNA-Rad50-CARD9 signaling complexes for activation of the transcription factor NF-κB and the generation of pro-IL-1ß. Primary cells conditionally deficient in Rad50 or lacking CARD9 consequently exhibited defective DNA-induced production of IL-1ß, and Card9(-/-) mice had impaired inflammatory responses after infection with a DNA virus in vivo. Our results define a cytosolic DNA-recognition pathway for inflammation and a physical and functional connection between a conserved DNA-damage sensor and the innate immune response to pathogens.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/imunologia , Enzimas Reparadoras do DNA/imunologia , DNA Viral/imunologia , Proteínas de Ligação a DNA/imunologia , Interleucina-1beta/biossíntese , Vaccinia virus/imunologia , Hidrolases Anidrido Ácido , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Proteína 10 de Linfoma CCL de Células B , Proteínas Adaptadoras de Sinalização CARD/genética , Linhagem Celular , Citosol/imunologia , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Células Dendríticas/imunologia , Ativação Enzimática , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , NF-kappa B/imunologia , Transdução de Sinais , Receptor 4 Toll-Like/biossíntese , Receptor Toll-Like 9/biossíntese , Vaccinia virus/genética
3.
J Clin Immunol ; 43(1): 46-56, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36121535

RESUMO

Almost 2 years into the pandemic and with vaccination of children significantly lagging behind adults, long-term pediatric humoral immune responses to SARS-CoV-2 are understudied. The C19.CHILD Hamburg (COVID-19 Child Health Investigation of Latent Disease) Study is a prospective cohort study designed to identify and follow up children and their household contacts infected in the early 2020 first wave of SARS-CoV-2. We screened 6113 children < 18 years by nasopharyngeal swab-PCR in a low-incidence setting after general lockdown, from May 11 to June 30, 2020. A total of 4657 participants underwent antibody testing. Positive tests were followed up by repeated PCR and serological testing of all household contacts over 6 months. In total, the study identified 67 seropositive children (1.44%); the median time after infection at first presentation was 83 days post-symptom onset (PSO). Follow-up of household contacts showed less than 100% seroprevalence in most families, with higher seroprevalence in families with adult index cases compared to pediatric index cases (OR 1.79, P = 0.047). Most importantly, children showed sustained seroconversion up to 9 months PSO, and serum antibody concentrations persistently surpassed adult levels (ratio serum IgG spike children vs. adults 90 days PSO 1.75, P < 0.001; 180 days 1.38, P = 0.01; 270 days 1.54, P = 0.001). In a low-incidence setting, SARS-CoV-2 infection and humoral immune response present distinct patterns in children including higher antibody levels, and lower seroprevalence in families with pediatric index cases. Children show long-term SARS-CoV-2 antibody responses. These findings are relevant to novel variants with increased disease burden in children, as well as for the planning of age-appropriate vaccination strategies.


Assuntos
Formação de Anticorpos , COVID-19 , Adulto , Humanos , Criança , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Estudos Prospectivos , Estudos Soroepidemiológicos , Controle de Doenças Transmissíveis , Anticorpos Antivirais
4.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685964

RESUMO

Glutaric acidemia type 1 (GA1) is a neurotoxic metabolic disorder due to glutaryl-CoA dehydrogenase (GCDH) deficiency. The high number of missense variants associated with the disease and their impact on GCDH activity suggest that disturbed protein conformation can affect the biochemical phenotype. We aimed to elucidate the molecular basis of protein loss of function in GA1 by performing a parallel analysis in a large panel of GCDH missense variants using different biochemical and biophysical methodologies. Thirteen GCDH variants were investigated in regard to protein stability, hydrophobicity, oligomerization, aggregation, and activity. An altered oligomerization, loss of protein stability and solubility, as well as an augmented susceptibility to aggregation were observed. GA1 variants led to a loss of enzymatic activity, particularly when present at the N-terminal domain. The reduced cellular activity was associated with loss of tetramerization. Our results also suggest a correlation between variant sequence location and cellular protein stability (p < 0.05), with a more pronounced loss of protein observed with variant proximity to the N-terminus. The broad panel of variant-mediated conformational changes of the GCDH protein supports the classification of GA1 as a protein-misfolding disorder. This work supports research toward new therapeutic strategies that target this molecular disease phenotype.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Glutaril-CoA Desidrogenase , Glutaril-CoA Desidrogenase/química , Glutaril-CoA Desidrogenase/genética , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/enzimologia , Encefalopatias Metabólicas/genética , Dobramento de Proteína , Mutação de Sentido Incorreto , Domínios Proteicos , Humanos , Estabilidade Enzimática , Solubilidade
5.
Cytometry A ; 101(3): 220-227, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34953025

RESUMO

Pediatric SARS-CoV-2 infection is often mild or asymptomatic and the immune responses of children are understudied compared to adults. Here, we present and evaluate the performance of a two-panel (16- and 17 parameter) flow cytometry-based approach for immune phenotypic analysis of cryopreserved PBMC samples from children after SARS-CoV-2 infection. The panels were optimized based on previous SARS-CoV-2 related studies for the pediatric immune system. PBMC samples from seven SARS-CoV-2 seropositive children from early 2020 and five age-matched healthy controls were stained for analysis of T-cells (panel T), B and innate immune cells (panel B). Performance of the panels was evaluated in two parallel approaches, namely classical manual gating of known subpopulations and unbiased clustering using the R-based algorithm PhenoGraph. Using manual gating we clearly identified 14 predefined subpopulations of interest for panel T and 19 populations in panel B in low-volume pediatric samples. PhenoGraph found 18 clusters within the T-cell panel and 21 clusters within the innate and B-cell panel that could be unmistakably annotated. Combining the data of the two panels and analysis approaches, we found expected differentially abundant clusters in SARS-CoV-2 seropositive children compared to healthy controls, underscoring the value of these two panels for the analysis of immune response to SARS-CoV-2. We established a two-panel flow cytometry approach that can be used with limited amounts of cryopreserved pediatric samples. Our workflow allowed for a rapid, comprehensive, and robust pediatric immune phenotyping with comparable performance in manual gating and unbiased clustering. These panels may be adapted for large multi-center cohort studies to investigate the pediatric immune response to emerging virus variants in the ongoing and future pandemics.


Assuntos
COVID-19 , SARS-CoV-2 , Criança , Citometria de Fluxo , Humanos , Imunidade , Leucócitos Mononucleares
6.
J Proteome Res ; 20(9): 4366-4380, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34383492

RESUMO

Mapping the network of proteins provides a powerful means to investigate the function of disease genes and to unravel the molecular basis of phenotypes. We present an automated informatics-aided and bioluminescence resonance energy transfer-based approach (iBRET) enabling high-confidence detection of protein-protein interactions in living mammalian cells. A screen of the ABCD1 protein, which is affected in X-linked adrenoleukodystrophy (X-ALD), against an organelle library of peroxisomal proteins demonstrated applicability of iBRET for large-scale experiments. We identified novel protein-protein interactions for ABCD1 (with ALDH3A2, DAO, ECI2, FAR1, PEX10, PEX13, PEX5, PXMP2, and PIPOX), mapped its position within the peroxisomal protein-protein interaction network, and determined that pathogenic missense variants in ABCD1 alter the interaction with selected binding partners. These findings provide mechanistic insights into pathophysiology of X-ALD and may foster the identification of new disease modifiers.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Informática , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transferência de Energia , Ácidos Graxos , Mutação
7.
Genet Med ; 23(9): 1705-1714, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34140661

RESUMO

PURPOSE: To investigate monoallelic CLPB variants. Pathogenic variants in many genes cause congenital neutropenia. While most patients exhibit isolated hematological involvement, biallelic CLPB variants underlie a neurological phenotype ranging from nonprogressive intellectual disability to prenatal encephalopathy with progressive brain atrophy, movement disorder, cataracts, 3-methylglutaconic aciduria, and neutropenia. CLPB was recently shown to be a mitochondrial refoldase; however, the exact function remains elusive. METHODS: We investigated six unrelated probands from four countries in three continents, with neutropenia and a phenotype dominated by epilepsy, developmental issues, and 3-methylglutaconic aciduria with next-generation sequencing. RESULTS: In each individual, we identified one of four different de novo monoallelic missense variants in CLPB. We show that these variants disturb refoldase and to a lesser extent ATPase activity of CLPB in a dominant-negative manner. Complexome profiling in fibroblasts showed CLPB at very high molecular mass comigrating with the prohibitins. In control fibroblasts, HAX1 migrated predominantly as monomer while in patient samples multiple HAX1 peaks were observed at higher molecular masses comigrating with CLPB thus suggesting a longer-lasting interaction between CLPB and HAX1. CONCLUSION: Both biallelic as well as specific monoallelic CLPB variants result in a phenotypic spectrum centered around neurodevelopmental delay, seizures, and neutropenia presumably mediated via HAX1.


Assuntos
Encefalopatias , Epilepsia , Deficiência Intelectual , Erros Inatos do Metabolismo , Neutropenia , Proteínas Adaptadoras de Transdução de Sinal , Humanos , Deficiência Intelectual/genética , Neutropenia/genética
8.
Mol Genet Metab ; 133(2): 157-181, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33965309

RESUMO

Glutaric aciduria type I (GA-I, OMIM # 231670) is an inborn error of metabolism caused by a deficiency of glutaryl-CoA dehydrogenase (GCDH). Patients develop acute encephalopathic crises (AEC) with striatal injury most often triggered by catabolic stress. The pathophysiology of GA-I, particularly in brain, is still not fully understood. We generated the first knock-in rat model for GA-I by introduction of the mutation p.R411W, the rat sequence homologue of the most common Caucasian mutation p.R402W, into the Gcdh gene of Sprague Dawley rats by CRISPR/CAS9 technology. Homozygous Gcdhki/ki rats revealed a high excretor phenotype, but did not present any signs of AEC under normal diet (ND). Exposure to a high lysine diet (HLD, 4.7%) after weaning resulted in clinical and biochemical signs of AEC. A significant increase of plasmatic ammonium concentrations was found in Gcdhki/ki rats under HLD, accompanied by a decrease of urea concentrations and a concomitant increase of arginine excretion. This might indicate an inhibition of the urea cycle. Gcdhki/ki rats exposed to HLD showed highly diminished food intake resulting in severely decreased weight gain and moderate reduction of body mass index (BMI). This constellation suggests a loss of appetite. Under HLD, pipecolic acid increased significantly in cerebral and extra-cerebral liquids and tissues of Gcdhki/ki rats, but not in WT rats. It seems that Gcdhki/ki rats under HLD activate the pipecolate pathway for lysine degradation. Gcdhki/ki rat brains revealed depletion of free carnitine, microglial activation, astroglyosis, astrocytic death by apoptosis, increased vacuole numbers, impaired OXPHOS activities and neuronal damage. Under HLD, Gcdhki/ki rats showed imbalance of intra- and extracellular creatine concentrations and indirect signs of an intracerebral ammonium accumulation. We successfully created the first rat model for GA-I. Characterization of this Gcdhki/ki strain confirmed that it is a suitable model not only for the study of pathophysiological processes, but also for the development of new therapeutic interventions. We further brought up interesting new insights into the pathophysiology of GA-I in brain and periphery.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/genética , Encéfalo/metabolismo , Gliose/genética , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Animais , Arginina/metabolismo , Encéfalo/patologia , Encefalopatias Metabólicas/metabolismo , Encefalopatias Metabólicas/patologia , Creatina/sangue , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Gliose/metabolismo , Gliose/patologia , Glutaril-CoA Desidrogenase/metabolismo , Humanos , Lisina/metabolismo , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Ratos
9.
Hum Mol Genet ; 27(10): 1732-1742, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29514280

RESUMO

Metabolic control of phenylalanine concentrations in body fluids is essential for cognitive development and executive function. The hepatic phenylalanine hydroxylating system is regulated by the ratio of l-phenylalanine, which is substrate of phenylalanine hydroxylase (PAH), to the PAH cofactor tetrahydrobiopterin (BH4). Physiologically, phenylalanine availability is governed by nutrient intake, whereas liver BH4 is kept at constant level. In phenylketonuria, PAH deficiency leads to elevated blood phenylalanine and is often caused by PAH protein misfolding with loss of function. Here, we report secondary hepatic BH4 deficiency in Pah-deficient mice. Alterations in de novo synthesis and turnover of BH4 were ruled out as molecular causes. We demonstrate that kinetically instable and aggregation-prone variant Pah proteins trap BH4, shifting the pool of free BH4 towards bound BH4. Interference of PAH protein misfolding with metabolite-based control of l-phenylalanine turnover suggests a mechanistic link between perturbation of protein homeostasis and disturbed regulation of metabolic pathways.


Assuntos
Biopterinas/análogos & derivados , Fenilalanina Hidroxilase/genética , Fenilalanina/metabolismo , Fenilcetonúrias/genética , Animais , Biopterinas/química , Biopterinas/genética , Biopterinas/metabolismo , Modelos Animais de Doenças , Humanos , Inativação Metabólica/genética , Cinética , Fígado/enzimologia , Camundongos , Fenilalanina/química , Fenilalanina/genética , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/metabolismo , Fenilcetonúrias/metabolismo , Fenilcetonúrias/patologia , Dobramento de Proteína , Proteostase/genética
10.
Hum Mol Genet ; 26(3): 538-551, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062662

RESUMO

The neurometabolic disorder glutaric aciduria type 1 (GA1) is caused by mutations in the GCDH gene encoding the mitochondrial matrix protein glutaryl-CoA dehydrogenase (GCDH), which forms homo- and heteromeric complexes. Twenty percent of all pathogenic mutations affect single amino acid residues on the surface of GCDH resulting in a severe clinical phenotype. We report here on heterologous expression studies of 18 missense mutations identified in GA1 patients affecting surface amino acids. Western blot and pulse chase experiments revealed that the stability of half of the GCDH mutants was significantly reduced. In silico analyses showed that none of the mutations impaired the 3D structure of GCDH. Immunofluorescence co-localisation studies in HeLa cells demonstrated that all GCDH mutants were correctly translocated into mitochondria. Surprisingly, the expression of p.Arg88Cys GCDH as well as further substitutions by alanine, lysine, or methionine but not histidine or leucine resulted in the disruption of mitochondrial architecture forming longitudinal structures composed of stacks of cristae and partial loss of the outer mitochondrial membrane. The expression of mitochondrial fusion or fission proteins was not affected in these cells. Bioluminescence resonance energy transfer analyses revealed that all GCDH mutants exhibit an increased binding affinity to electron transfer flavoprotein beta, whereas only p.Tyr155His GCDH showed a reduced interaction with dihydrolipoamide succinyl transferase. Our data underscore the impact of GCDH protein interactions mediated by amino acid residues on the surface of GCDH required for proper enzymatic activity.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/genética , Estabilidade Enzimática/genética , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Mitocôndrias/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Substituição de Aminoácidos/genética , Encefalopatias Metabólicas/patologia , Regulação Enzimológica da Expressão Gênica/genética , Glutaril-CoA Desidrogenase/química , Células HeLa , Humanos , Mitocôndrias/patologia , Dinâmica Mitocondrial/genética , Mutação de Sentido Incorreto/genética , Conformação Proteica , Multimerização Proteica/genética
11.
Am J Hum Genet ; 96(2): 245-57, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25597510

RESUMO

We studied a group of individuals with elevated urinary excretion of 3-methylglutaconic acid, neutropenia that can develop into leukemia, a neurological phenotype ranging from nonprogressive intellectual disability to a prenatal encephalopathy with progressive brain atrophy, movement disorder, cataracts, and early death. Exome sequencing of two unrelated individuals and subsequent Sanger sequencing of 16 individuals with an overlapping phenotype identified a total of 14 rare, predicted deleterious alleles in CLPB in 14 individuals from 9 unrelated families. CLPB encodes caseinolytic peptidase B homolog ClpB, a member of the AAA+ protein family. To evaluate the relevance of CLPB in the pathogenesis of this syndrome, we developed a zebrafish model and an in vitro assay to measure ATPase activity. Suppression of clpb in zebrafish embryos induced a central nervous system phenotype that was consistent with cerebellar and cerebral atrophy that could be rescued by wild-type, but not mutant, human CLPB mRNA. Consistent with these data, the loss-of-function effect of one of the identified variants (c.1222A>G [p.Arg408Gly]) was supported further by in vitro evidence with the mutant peptides abolishing ATPase function. Additionally, we show that CLPB interacts biochemically with ATP2A2, known to be involved in apoptotic processes in severe congenital neutropenia (SCN) 3 (Kostmann disease [caused by HAX1 mutations]). Taken together, mutations in CLPB define a syndrome with intellectual disability, congenital neutropenia, progressive brain atrophy, movement disorder, cataracts, and 3-methylglutaconic aciduria.


Assuntos
Anormalidades Múltiplas/genética , Encéfalo/patologia , Endopeptidase Clp/genética , Deficiência Intelectual/genética , Erros Inatos do Metabolismo/genética , Anormalidades Múltiplas/patologia , Adenosina Trifosfatases/metabolismo , Animais , Atrofia/genética , Atrofia/patologia , Sequência de Bases , Catarata/genética , Catarata/patologia , Endopeptidase Clp/metabolismo , Exoma/genética , Humanos , Deficiência Intelectual/patologia , Erros Inatos do Metabolismo/patologia , Dados de Sequência Molecular , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Neutropenia/genética , Neutropenia/patologia , Polimorfismo de Nucleotídeo Único/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Análise de Sequência de DNA , Peixe-Zebra
12.
J Inherit Metab Dis ; 41(3): 285-296, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29404805

RESUMO

The group of inborn errors of metabolism (IEM) displays a marked heterogeneity and IEM can affect virtually all functions and organs of the human organism; however, IEM share that their associated proteins function in metabolism. Most proteins carry out cellular functions by interacting with other proteins, and thus are organized in biological networks. Therefore, diseases are rarely the consequence of single gene mutations but of the perturbations caused in the related cellular network. Systematic approaches that integrate multi-omics and database information into biological networks have successfully expanded our knowledge of complex disorders but network-based strategies have been rarely applied to study IEM. We analyzed IEM on a proteome scale and found that IEM-associated proteins are organized as a network of linked modules within the human interactome of protein interactions, the IEM interactome. Certain IEM disease groups formed self-contained disease modules, which were highly interlinked. On the other hand, we observed disease modules consisting of proteins from many different disease groups in the IEM interactome. Moreover, we explored the overlap between IEM and non-IEM disease genes and applied network medicine approaches to investigate shared biological pathways, clinical signs and symptoms, and links to drug targets. The provided resources may help to elucidate the molecular mechanisms underlying new IEM, to uncover the significance of disease-associated mutations, to identify new biomarkers, and to develop novel therapeutic strategies.


Assuntos
Redes Reguladoras de Genes/fisiologia , Genômica/métodos , Erros Inatos do Metabolismo/genética , Mapas de Interação de Proteínas/fisiologia , Análise de Sistemas , Genômica/tendências , Humanos , Recém-Nascido , Erros Inatos do Metabolismo/metabolismo , Metabolômica
14.
J Med Genet ; 52(3): 175-85, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25596310

RESUMO

BACKGROUND: In phenylketonuria, genetic heterogeneity, frequent compound heterozygosity, and the lack of functional data for phenylalanine hydroxylase genotypes hamper reliable phenotype prediction and individualised treatment. METHODS: A literature search revealed 690 different phenylalanine hydroxylase genotypes in 3066 phenylketonuria patients from Europe and the Middle East. We determined phenylalanine hydroxylase function of 30 frequent homozygous and compound heterozygous genotypes covering 55% of the study population, generated activity landscapes, and assessed the phenylalanine hydroxylase working range in the metabolic (phenylalanine) and therapeutic (tetrahydrobiopterin) space. RESULTS: Shared patterns in genotype-specific functional landscapes were linked to biochemical and pharmacological phenotypes, where (1) residual activity below 3.5% was associated with classical phenylketonuria unresponsive to pharmacological treatment; (2) lack of defined peak activity induced loss of response to tetrahydrobiopterin; (3) a higher cofactor need was linked to inconsistent clinical phenotypes and low rates of tetrahydrobiopterin response; and (4) residual activity above 5%, a defined peak of activity, and a normal cofactor need were associated with pharmacologically treatable mild phenotypes. In addition, we provide a web application for retrieving country-specific information on genotypes and genotype-specific phenylalanine hydroxylase function that warrants continuous extension, updates, and research on demand. CONCLUSIONS: The combination of genotype-specific functional analyses with biochemical, clinical, and therapeutic data of individual patients may serve as a powerful tool to enable phenotype prediction and to establish personalised medicine strategies for dietary regimens and pharmacological treatment in phenylketonuria.


Assuntos
Estudos de Associação Genética , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/genética , Medicina de Precisão , Europa (Continente) , Genótipo , Humanos , Oriente Médio , Mutação , Fenilcetonúrias/fisiopatologia
15.
Hum Mol Genet ; 21(8): 1877-87, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22246293

RESUMO

Phenylketonuria (PKU) is caused by inherited phenylalanine-hydroxylase (PAH) deficiency and, in many genotypes, it is associated with protein misfolding. The natural cofactor of PAH, tetrahydrobiopterin (BH(4)), can act as a pharmacological chaperone (PC) that rescues enzyme function. However, BH(4) shows limited efficacy in some PKU genotypes and its chemical synthesis is very costly. Taking an integrated drug discovery approach which has not been applied to this target before, we identified alternative PCs for the treatment of PKU. Shape-focused virtual screening of the National Cancer Institute's chemical library identified 84 candidate molecules with potential to bind to the active site of PAH. An in vitro evaluation of these yielded six compounds that restored the enzymatic activity of the unstable PAHV106A variant and increased its stability in cell-based assays against proteolytic degradation. During a 3-day treatment study, two compounds (benzylhydantoin and 6-amino-5-(benzylamino)-uracil) substantially improved the in vivo Phe oxidation and blood Phe concentrations of PKU mice (Pah(enu1)). Notably, benzylhydantoin was twice as effective as tetrahydrobiopterin. In conclusion, we identified two PCs with high in vivo efficacy that may be further developed into a more effective drug treatment of PKU.


Assuntos
Hidantoínas/metabolismo , Fenilalanina Hidroxilase/metabolismo , Fenilcetonúrias/tratamento farmacológico , Uracila/análogos & derivados , Animais , Sítios de Ligação , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Estabilidade Enzimática , Humanos , Hidantoínas/química , Hidantoínas/farmacologia , Hidantoínas/toxicidade , Camundongos , Oxirredução , Fenilalanina/metabolismo , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/deficiência , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/metabolismo , Dobramento de Proteína , Bibliotecas de Moléculas Pequenas , Uracila/química , Uracila/metabolismo , Uracila/farmacologia , Uracila/toxicidade
16.
J Inherit Metab Dis ; 37(4): 505-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24687294

RESUMO

To attain functionality, proteins must fold into their three-dimensional native state. The intracellular balance between protein synthesis, folding, and degradation is constantly challenged by genetic or environmental stress factors. In the last ten years, protein misfolding induced by missense mutations was demonstrated to be the seminal molecular mechanism in a constantly growing number of inborn errors of metabolism. In these cases, loss of protein function results from early degradation of missense-induced misfolded proteins. Increasing knowledge on the proteostasis network and the protein quality control system with distinct mechanisms in different compartments of the cell paved the way for the development of new treatment strategies for conformational diseases using small molecules. These comprise proteostasis regulators that enhance the capacity of the proteostasis network and pharmacological chaperones that specifically bind and rescue misfolded proteins by conformational stabilization. They can be used either alone or in combination, the latter to exploit synergistic effects. Many of these small molecule compounds currently undergo preclinical and clinical pharmaceutical development and two have been approved: saproterin dihydrochloride for the treatment of phenylketonuria and tafamidis for the treatment of transthyretin-related hereditary amyloidosis. Different technologies are exploited for the discovery of new small molecule compounds that belong to the still young class of pharmaceutical products discussed here. These compounds may in the near future improve existing treatment strategies or even offer a first-time treatment to patients suffering from nowadays-untreatable inborn errors of metabolism.


Assuntos
Erros Inatos do Metabolismo/terapia , Chaperonas Moleculares/uso terapêutico , Dobramento de Proteína , Deficiências na Proteostase/terapia , Animais , Sistemas de Liberação de Medicamentos , Degradação Associada com o Retículo Endoplasmático/fisiologia , Humanos , Cinética , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/metabolismo , Chaperonas Moleculares/farmacologia , Dobramento de Proteína/efeitos dos fármacos , Proteínas/química , Proteínas/metabolismo , Deficiências na Proteostase/complicações , Deficiências na Proteostase/metabolismo
17.
J Biol Chem ; 287(1): 210-221, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22045812

RESUMO

The neurodegenerative disease X-linked adrenoleukodystrophy (X-ALD) is characterized by the abnormal accumulation of very long chain fatty acids. Mutations in the gene encoding the peroxisomal ATP-binding cassette half-transporter, adrenoleukodystrophy protein (ALDP), are the primary cause of X-ALD. To gain a better understanding of ALDP dysfunction, we searched for interaction partners of ALDP and identified binary interactions to proteins with functions in fatty acid synthesis (ACLY, FASN, and ACC) and activation (FATP4), constituting a thus far unknown fatty acid synthesis-transport machinery at the cytoplasmic side of the peroxisomal membrane. This machinery adds to the knowledge of the complex mechanisms of peroxisomal fatty acid metabolism at a molecular level and elucidates potential epigenetic mechanisms as regulatory processes in the pathogenesis and thus the clinical course of X-ALD.


Assuntos
Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/biossíntese , Ácidos Graxos/metabolismo , Membranas Intracelulares/metabolismo , Peroxissomos/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Adrenoleucodistrofia/metabolismo , Transporte Biológico , Ácido Graxo Sintases/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Imunoprecipitação , Análise Espectral
18.
Hum Mol Genet ; 20(13): 2628-41, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21527427

RESUMO

The discovery of a pharmacological treatment for phenylketonuria (PKU) raised new questions about function and dysfunction of phenylalanine hydroxylase (PAH), the enzyme deficient in this disease. To investigate the interdependence of the genotype, the metabolic state (phenylalanine substrate) and treatment (BH(4) cofactor) in the context of enzyme function in vitro and in vivo, we (i) used a fluorescence-based method for fast enzyme kinetic analyses at an expanded range of phenylalanine and BH(4) concentrations, (ii) depicted PAH function as activity landscapes, (iii) retraced the analyses in eukaryotic cells, and (iv) translated this into the human system by analyzing the outcome of oral BH(4) loading tests. PAH activity landscapes uncovered the optimal working range of recombinant wild-type PAH and provided new insights into PAH kinetics. They demonstrated how mutations might alter enzyme function in the space of varying substrate and cofactor concentrations. Experiments in eukaryotic cells revealed that the availability of the active PAH enzyme depends on the phenylalanine-to-BH(4) ratio. Finally, evaluation of data from BH(4) loading tests indicated that the patient's genotype influences the impact of the metabolic state on drug response. The results allowed for visualization and a better understanding of PAH function in the physiological and pathological state as well as in the therapeutic context of cofactor treatment. Moreover, our data underscore the need for more personalized procedures to safely identify and treat patients with BH(4)-responsive PAH deficiency.


Assuntos
Biopterinas/análogos & derivados , Coenzimas/uso terapêutico , Genótipo , Fenilalanina Hidroxilase/genética , Fenilalanina Hidroxilase/metabolismo , Fenilalanina/metabolismo , Fenilcetonúrias , Biopterinas/farmacologia , Biopterinas/uso terapêutico , Coenzimas/farmacologia , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Cinética , Chaperonas Moleculares/metabolismo , Mutação/genética , Fenilalanina Hidroxilase/deficiência , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/enzimologia , Fenilcetonúrias/genética
19.
Viruses ; 15(7)2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37515239

RESUMO

The situation of limited data concerning the response to COVID-19 mRNA vaccinations in immunocom-promised children hinders evidence-based recommendations. This prospective observational study investigated humoral and T cell responses after primary BNT162b2 vaccination in secondary immunocompromised and healthy children aged 5-11 years. Participants were categorized as: children after kidney transplantation (KTx, n = 9), proteinuric glomerulonephritis (GN, n = 4) and healthy children (controls, n = 8). Expression of activation-induced markers and cytokine secretion were determined to quantify the T cell response from PBMCs stimulated with peptide pools covering the spike glycoprotein of SARS-CoV-2 Wuhan Hu-1 and Omicron BA.5. Antibodies against SARS-CoV-2 spike receptor-binding domain were quantified in serum. Seroconversion was detected in 56% of KTx patients and in 100% of the GN patients and controls. Titer levels were significantly higher in GN patients and controls than in KTx patients. In Ktx patients, the humoral response increased after a third immunization. No differences in the frequency of antigen-specific CD4+ and CD8+ T cells between all groups were observed. T cells showed a predominant anti-viral capacity in their secreted cytokines; however, this capacity was reduced in KTx patients. This study provides missing evidence concerning the humoral and T cell response in immunocompromised children after COVID-19 vaccination.


Assuntos
COVID-19 , Transplante de Rim , Humanos , Criança , Vacina BNT162 , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Imunidade Celular , Rim , RNA Mensageiro/genética , Anticorpos Antivirais , Vacinação , Imunidade Humoral
20.
J Clin Invest ; 133(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014703

RESUMO

Current therapies for Fabry disease are based on reversing intracellular accumulation of globotriaosylceramide (Gb3) by enzyme replacement therapy (ERT) or chaperone-mediated stabilization of the defective enzyme, thereby alleviating lysosomal dysfunction. However, their effect in the reversal of end-organ damage, like kidney injury and chronic kidney disease, remains unclear. In this study, ultrastructural analysis of serial human kidney biopsies showed that long-term use of ERT reduced Gb3 accumulation in podocytes but did not reverse podocyte injury. Then, a CRISPR/Cas9-mediated α-galactosidase knockout podocyte cell line confirmed ERT-mediated reversal of Gb3 accumulation without resolution of lysosomal dysfunction. Transcriptome-based connectivity mapping and SILAC-based quantitative proteomics identified α-synuclein (SNCA) accumulation as a key event mediating podocyte injury. Genetic and pharmacological inhibition of SNCA improved lysosomal structure and function in Fabry podocytes, exceeding the benefits of ERT. Together, this work reconceptualizes Fabry-associated cell injury beyond Gb3 accumulation, and introduces SNCA modulation as a potential intervention, especially for patients with Fabry nephropathy.


Assuntos
Doença de Fabry , Podócitos , Humanos , Podócitos/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Doença de Fabry/genética , Doença de Fabry/tratamento farmacológico , Doença de Fabry/patologia , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , alfa-Galactosidase/uso terapêutico , Rim/metabolismo , Triexosilceramidas/metabolismo , Triexosilceramidas/farmacologia , Triexosilceramidas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa