Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hippocampus ; 30(10): 1044-1057, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32412680

RESUMO

The rodent hippocampus expresses a variety of neuronal network oscillations depending on the behavioral state of the animal. Locomotion and active exploration are accompanied by theta-nested gamma oscillations while resting states and slow-wave sleep are dominated by intermittent sharp wave-ripple complexes. It is believed that gamma rhythms create a framework for efficient acquisition of information whereas sharp wave-ripples are thought to be involved in consolidation and retrieval of memory. While not strictly mutually exclusive, one of the two patterns usually dominates in a given behavioral state. Here we explore how different input patterns induce either of the two network states, using an optogenetic stimulation approach in hippocampal brain slices of mice. We report that the pattern of the evoked oscillation depends strongly on the initial synchrony of activation of excitatory cells within CA3. Short, synchronous activation favors the emergence of sharp wave-ripple complexes while persistent but less synchronous activity-as typical for sensory input during exploratory behavior-supports the generation of gamma oscillations. This dichotomy is reflected by different degrees of synchrony of excitatory and inhibitory synaptic currents within these two states. Importantly, the induction of these two fundamental network patterns does not depend on the presence of any neuromodulatory transmitter like acetylcholine, but is merely based on a different synchrony in the initial activation pattern.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Ritmo Gama/fisiologia , Hipocampo/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Rede Nervosa/fisiologia , Animais , Hipocampo/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos , Rede Nervosa/química , Optogenética/métodos , Técnicas de Cultura de Órgãos
2.
Biochem Biophys Res Commun ; 519(1): 141-147, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31481236

RESUMO

Atrial fibrillation (AF) is the most frequent sustained arrhythmia and can lead to structural cardiac changes, known as tachycardia-induced cardiomyopathy (TIC). HCN4 is implicated in spontaneous excitation of the sinoatrial node, while channel dysfunction has been associated with sinus bradycardia, AF and structural heart disease. We here asked whether HCN4 mutations may contribute to the development of TIC, as well. Mutation scanning of HCN4 in 60 independent patients with AF and suspected TIC followed by panel sequencing in carriers of HCN4 variants identified the HCN4 variant P883R [minor allele frequency (MAF): 0,88%], together with the KCNE1 variant S38G (MAF: 65%) in three unrelated patients. Family histories revealed additional cases of AF, sudden cardiac death and cardiomyopathy. Patch-clamp recordings of HCN4-P883R channels expressed in HEK293 cells showed remarkable alterations of channel properties shifting the half-maximal activation voltage to more depolarized potentials, while channel deactivation was faster compared to wild-type (WT). Co-transfection of WT and mutant subunits, resembling the heterozygous cellular situation of our patients, revealed significantly higher current densities compared to WT. In conclusion HCN4-P883R may increase ectopic trigger and maintenance of AF by shifting the activation voltage of If to more positive potentials and producing higher current density. Together with the common KCNE1 variant S38G, previously proposed as a genetic modifier of AF, HCN4-P883R may provide a substrate for the development of AF and TIC.


Assuntos
Fibrilação Atrial/genética , Genes Modificadores , Predisposição Genética para Doença , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Proteínas Musculares/genética , Mutação/genética , Canais de Potássio/genética , Sequência de Aminoácidos , Feminino , Testes Genéticos , Células HEK293 , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Ativação do Canal Iônico , Masculino , Proteínas Musculares/química , Linhagem , Canais de Potássio/química
3.
Basic Res Cardiol ; 112(1): 8, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28005193

RESUMO

Atrial fibrillation (AF) is the most common cardiac arrhythmia. Concomitant heart failure (HF) poses a particular therapeutic challenge and is associated with prolonged atrial electrical refractoriness compared with non-failing hearts. We hypothesized that downregulation of atrial repolarizing TREK-1 (K2P2.1) K+ channels contributes to electrical remodeling during AF with HF, and that TREK-1 gene transfer would provide rhythm control via normalization of atrial effective refractory periods in this AF subset. In patients with chronic AF and HF, atrial TREK-1 mRNA levels were reduced by 82% (left atrium) and 81% (right atrium) compared with sinus rhythm (SR) subjects. Human findings were recapitulated in a porcine model of atrial tachypacing-induced AF and reduced left ventricular function. TREK-1 mRNA (-66%) and protein (-61%) was suppressed in AF animals at 14-day follow-up compared with SR controls. Downregulation of repolarizing TREK-1 channels was associated with prolongation of atrial effective refractory periods versus baseline conditions, consistent with prior observations in humans with HF. In a preclinical therapeutic approach, pigs were randomized to either atrial Ad-TREK-1 gene therapy or sham treatment. Gene transfer effectively increased TREK-1 protein levels and attenuated atrial effective refractory period prolongation in the porcine AF model. Ad-TREK-1 increased the SR prevalence to 62% during follow-up in AF animals, compared to 35% in the untreated AF group. In conclusion, TREK-1 downregulation and rhythm control by Ad-TREK-1 transfer suggest mechanistic and potential therapeutic significance of TREK-1 channels in a subgroup of AF patients with HF and prolonged atrial effective refractory periods. Functional correction of ionic remodeling through TREK-1 gene therapy represents a novel paradigm to optimize and specify AF management.


Assuntos
Fibrilação Atrial/metabolismo , Insuficiência Cardíaca/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Adenoviridae , Adulto , Idoso , Animais , Fibrilação Atrial/fisiopatologia , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Terapia Genética/métodos , Vetores Genéticos , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Canais de Potássio de Domínios Poros em Tandem/genética , Distribuição Aleatória , Suínos
4.
Nat Commun ; 10(1): 3295, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337768

RESUMO

HCN channels underlie the depolarizing funny current (If) that contributes importantly to cardiac pacemaking. If is upregulated in failing and infarcted hearts, but its implication in disease mechanisms remained unresolved. We generated transgenic mice (HCN4tg/wt) to assess functional consequences of HCN4 overexpression-mediated If increase in cardiomyocytes to levels observed in human heart failure. HCN4tg/wt animals exhibit a dilated cardiomyopathy phenotype with increased cellular arrhythmogenicity but unchanged heart rate and conduction parameters. If augmentation induces a diastolic Na+ influx shifting the Na+/Ca2+ exchanger equilibrium towards 'reverse mode' leading to increased [Ca2+]i. Changed Ca2+ homeostasis results in significantly higher systolic [Ca2+]i transients and stimulates apoptosis. Pharmacological inhibition of If prevents the rise of [Ca2+]i and protects from ventricular remodeling. Here we report that augmented myocardial If alters intracellular Ca2+ homeostasis leading to structural cardiac changes and increased arrhythmogenicity. Inhibition of myocardial If per se may constitute a therapeutic mechanism to prevent cardiomyopathy.


Assuntos
Cálcio/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Proteínas Musculares/fisiologia , Canais de Potássio/fisiologia , Animais , Apoptose , Eletrofisiologia Cardíaca , Perfilação da Expressão Gênica , Coração/fisiologia , Homeostase , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Camundongos Transgênicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Troponina I/genética , Troponina I/metabolismo , Troponina I/fisiologia
5.
Stem Cell Res Ther ; 8(1): 229, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29037217

RESUMO

BACKGROUND: Human induced pluripotent stem cells (hiPSC) harbor the potential to differentiate into diverse cardiac cell types. Previous experimental efforts were primarily directed at the generation of hiPSC-derived cells with ventricular cardiomyocyte characteristics. Aiming at a straightforward approach for pacemaker cell modeling and replacement, we sought to selectively differentiate cells with nodal-type properties. METHODS: hiPSC were differentiated into spontaneously beating clusters by co-culturing with visceral endoderm-like cells in a serum-free medium. Subsequent culturing in a specified fetal bovine serum (FBS)-enriched cell medium produced a pacemaker-type phenotype that was studied in detail using quantitative real-time polymerase chain reaction (qRT-PCR), immunocytochemistry, and patch-clamp electrophysiology. Further investigations comprised pharmacological stimulations and co-culturing with neonatal cardiomyocytes. RESULTS: hiPSC co-cultured in a serum-free medium with the visceral endoderm-like cell line END-2 produced spontaneously beating clusters after 10-12 days of culture. The pacemaker-specific genes HCN4, TBX3, and TBX18 were abundantly expressed at this early developmental stage, while levels of sarcomeric gene products remained low. We observed that working-type cardiomyogenic differentiation can be suppressed by transfer of early clusters into a FBS-enriched cell medium immediately after beating onset. After 6 weeks under these conditions, sinoatrial node (SAN) hallmark genes remained at high levels, while working-type myocardial transcripts (NKX2.5, TBX5) were low. Clusters were characterized by regular activity and robust beating rates (70-90 beats/min) and were triggered by spontaneous Ca2+ transients recapitulating calcium clock properties of genuine pacemaker cells. They were responsive to adrenergic/cholinergic stimulation and able to pace neonatal rat ventricular myocytes in co-culture experiments. Action potential (AP) measurements of cells individualized from clusters exhibited nodal-type (63.4%) and atrial-type (36.6%) AP morphologies, while ventricular AP configurations were not observed. CONCLUSION: We provide a novel culture media-based, transgene-free approach for targeted generation of hiPSC-derived pacemaker-type cells that grow in clusters and offer the potential for disease modeling, drug testing, and individualized cell-based replacement therapy of the SAN.


Assuntos
Relógios Biológicos , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Potenciais de Ação , Animais , Sinalização do Cálcio , Células Cultivadas , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Contração Miocárdica , Miócitos Cardíacos/classificação , Ratos , Nó Sinoatrial/citologia , Nó Sinoatrial/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa