Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 137(17): 174708, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23145743

RESUMO

The formation of dipoles at interfaces between organic semiconductors is expected to play a significant role in the operation of organic-based devices, though the electronic processes at their origin have still to be clearly elucidated. Quantum-chemical calculations can prove very useful to shed light on such electronic interfacial phenomena provided that a suitable theoretical approach is used. In this context, we have performed calculations on small vertical stacks of TTF-TCNQ molecules, first at the CAS-MRCI level to validate the use of single-determinantal approaches, then at the MP2 level set as a benchmark. Various density functional theory (DFT) functionals have then been applied to larger stacks, showing that long-range corrected functionals are required to reproduce MP2 results taken as benchmark. Finally, the use of periodic boundary conditions at the DFT level points to the huge impact of depolarization effects between adjacent stacks.

2.
J Phys Condens Matter ; 20(37): 374105, 2008 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-21694412

RESUMO

The concept of single molecule rectifiers proposed in a theoretical work by Aviram and Ratner in 1974 was the starting point of the now vibrant field of molecular electronics. In the meantime, a built-in asymmetry in the conductance of molecular junctions has been reported at the experimental level. In this contribution, we present a theoretical comparison of three different types of unimolecular rectifiers: (i) systems where the donor and acceptor parts of the molecules are taken from charge-transfer salt components; (ii) zwitterionic systems and (iii) tour wires with nitro substituents. We conduct an analysis of the rectification mechanism in these three different types of asymmetric molecules on the basis of parameterized quantum chemical models as well as with a full non-equilibrium Green's function-density functional theory (NEGF-DFT) treatment of the current-voltage characteristics of the respective metal-molecule-metal junctions. We put a particular emphasis on the prediction of rectification ratios (RRs), which are crucial for the assessment of the technological usefulness of single molecule junctions as diodes. We also compare our results with values reported in the literature for other types of molecular rectification, where the essential asymmetry is not induced by the structure of the molecule alone but either by a difference in the electronic coupling of the molecule to the two electrodes or by attaching alkyl chains of different lengths to the central molecular moiety.

3.
J Phys Chem B ; 109(43): 20237-43, 2005 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16853617

RESUMO

We report on a quantum-chemical study of the electronic and optical properties of unsubstituted oligo(phenylene vinylene) (OPV) radical cations. Our goal is to distinguish the impact of the choice of molecular geometry from the impact of the choice of quantum-chemical method, on the calculated optical transition energies. The geometry modifications upon ionization of the OPV chains are found to depend critically on the theoretical formalism: Hartree-Fock (HF) geometry optimizations lead to self-localization of the charged defects while pure density functional theory (DFT) results in a complete delocalization of the geometric modifications over the whole conjugated backbone. The electronic structure and vertical transition energy associated with the lowest excited state of the radical cations have been calculated at the post-Hartree-Fock level within a configuration interaction (HF-CI) scheme and using the time-dependent DFT (TD-DFT) formalism for different radical cation geometries. Interestingly, the changes in the calculated optical properties obtained when using different geometric structures are less important within a given method than the differences between methods for a given structure. The optical excitation is localized with HF-CI and delocalized with TD-DFT, almost irrespective of the molecular geometry; as a result, HF-CI excitation energies tend to saturate as the chain length increases, in contrast to the results from TD-DFT.

4.
J Chem Phys ; 124(4): 044510, 2006 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-16460188

RESUMO

We report a detailed quantum-chemical investigation of donor-acceptor substituted dipolar nonlinear optical chromophores incorporating the 4-(dimethylamino)phenyl donor end group and a variety of strong heterocyclic acceptor end groups, including tricyanofurans and tricyanopyrroles. In particular, we study the variation of the molecular second-order polarizability (beta) with the acceptor end group and when inserting auxiliary donors (thiophene) and acceptors (thiazole) into the pi bridge. Both finite-field calculations (in the context of local contributions) and sum-over-states calculations were carried out in order to probe the relationship between beta and the chemical structure of the various chromophores. The trends obtained with these two methods are fully consistent. The large beta values (up to 700 x 10(-30) esu) as well as the observed tunability of the optical absorption maximum (lambda(max)) make the chromophores investigated here interesting candidates for use in electro-optic applications at telecommunications wavelengths.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa