Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Pharmacokinet Pharmacodyn ; 43(1): 13-27, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26563503

RESUMO

The main objective was to help design a paediatric study for ivabradine, a compound already marketed in adults, focusing on: the paediatric formulation evaluation, the doses to be administered, the sampling design and the sampling technique. A secondary objective was to perform a comparison of the prediction of ivabradine pharmacokinetics (PK) in children using a physiologically-based pharmacokinetic (PBPK) approach and allometric scaling of a population pharmacokinetic (PPK) model. A study was conducted in order to assess the relative bioavailability (Frel) of the paediatric formulation and a similar Frel was observed between the paediatric formulation and the adult marketed tablet. PBPK modelling was used to predict initial doses to be administered in the paediatric study and to select the most appropriate sample time collections. The dried blood spot technique was recommended in the clinical trial in children. Simulations obtained by both the PBPK approach and allometric scaling of a PPK model were compared a posteriori to the paediatric study observations. Both PPK and PBPK approaches allowed an adequate prediction of the PK of ivabradine and its metabolite in children.


Assuntos
Benzazepinas/farmacocinética , Cardiotônicos/farmacocinética , Administração Intravenosa , Administração Oral , Adolescente , Adulto , Envelhecimento/metabolismo , Disponibilidade Biológica , Química Farmacêutica , Criança , Pré-Escolar , Simulação por Computador , Citocromo P-450 CYP3A/metabolismo , Teste em Amostras de Sangue Seco , Feminino , Humanos , Lactente , Ivabradina , Masculino , Modelos Biológicos , Pediatria , População , Projetos de Pesquisa , Comprimidos
2.
Clin Pharmacokinet ; 52(1): 43-57, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23212609

RESUMO

BACKGROUND: Since 2007, it is mandatory for the pharmaceutical companies to submit a Paediatric Investigation Plan to the Paediatric Committee at the European Medicines Agency for any drug in development in adults, and it often leads to the need to conduct a pharmacokinetic study in children. Pharmacokinetic studies in children raise ethical and methodological issues. Because of limitation of sampling times, appropriate methods, such as the population approach, are necessary for analysis of the pharmacokinetic data. The choice of the pharmacokinetic sampling design has an important impact on the precision of population parameter estimates. Approaches for design evaluation and optimization based on the evaluation of the Fisher information matrix (M(F)) have been proposed and are now implemented in several software packages, such as PFIM in R. OBJECTIVES: The objectives of this work were to (1) develop a joint population pharmacokinetic model to describe the pharmacokinetic characteristics of a drug S and its active metabolite in children after intravenous drug administration from simulated plasma concentration-time data produced using physiologically based pharmacokinetic (PBPK) predictions; (2) optimize the pharmacokinetic sampling times for an upcoming clinical study using a multi-response design approach, considering clinical constraints; and (3) evaluate the resulting design taking data below the lower limit of quantification (BLQ) into account. METHODS: Plasma concentration-time profiles were simulated in children using a PBPK model previously developed with the software SIMCYP(®) for the parent drug and its active metabolite. Data were analysed using non-linear mixed-effect models with the software NONMEM(®), using a joint model for the parent drug and its metabolite. The population pharmacokinetic design, for the future study in 82 children from 2 to 18 years old, each receiving a single dose of the drug, was then optimized using PFIM, assuming identical times for parent and metabolite concentration measurements and considering clinical constraints. Design evaluation was based on the relative standard errors (RSEs) of the parameters of interest. In the final evaluation of the proposed design, an approach was used to assess the possible effect of BLQ concentrations on the design efficiency. This approach consists of rescaling the M(F), using, at each sampling time, the probability of observing a concentration BLQ computed from Monte-Carlo simulations. RESULTS: A joint pharmacokinetic model with three compartments for the parent drug and one for its active metabolite, with random effects on four parameters, was used to fit the simulated PBPK concentration-time data. A combined error model best described the residual variability. Parameters and dose were expressed per kilogram of bodyweight. Reaching a compromise between PFIM results and clinical constraints, the optimal design was composed of four samples at 0.1, 1.8, 5 and 10 h after drug injection. This design predicted RSE lower than 30 % for the four parameters of interest. For this design, rescaling M(F) for BLQ data had very little influence on predicted RSE. CONCLUSION: PFIM was a useful tool to find an optimal sampling design in children, considering clinical constraints. Even if it was not forecasted initially by the investigators, this approach showed that it was really necessary to include a late sampling time for all children. Moreover, we described an approach to evaluate designs assuming expected proportions of BLQ data are omitted.


Assuntos
Monitoramento de Medicamentos/métodos , Modelos Biológicos , Farmacocinética , Projetos de Pesquisa , Software , Análise Química do Sangue , Criança , Pré-Escolar , Simulação por Computador , Feminino , Humanos , Masculino , Modelos Estatísticos , Fatores de Tempo
3.
Eur J Pharm Sci ; 43(3): 141-50, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21540108

RESUMO

A clinical study was conducted to assess the ability of a microdose (100 µg) to predict the human pharmacokinetics (PK) following a therapeutic dose of clarithromycin, sumatriptan, propafenone, paracetamol (acetaminophen) and phenobarbital, both within the study and by reference to the existing literature on these compounds and to explore the source of any nonlinearity if seen. For each drug, 6 healthy male volunteers were dosed with 100 µg (14)C-labelled compound. For clarithromycin, sumatriptan, and propafenone this labelled dose was administered alone, i.e. as a microdose, orally and intravenously (iv) and as an iv tracer dose concomitantly with an oral non-labelled therapeutic dose, in a 3-way cross over design. The oral therapeutic doses were 250, 50, and 150 mg, respectively. Paracetamol was given as the labelled microdose orally and iv using a 2-way cross over design, whereas phenobarbital was given only as the microdose orally. Plasma concentrations of total (14)C and parent drug were measured using accelerator mass spectrometry (AMS) or HPLC followed by AMS. Plasma concentrations following non-(14)C-labelled oral therapeutic doses were measured using either HPLC-electrochemical detection (clarithromycin) or HPLC-UV (sumatriptan, propafenone). For all five drugs an oral microdose predicted reasonably well the PK, including the shape of the plasma profile, following an oral therapeutic dose. For clarithromycin, sumatriptan, and propafenone, one parameter, oral bioavailability, was marginally outside of the normally acceptable 2-fold prediction interval around the mean therapeutic dose value. For clarithromycin, sumatriptan and propafenone, data obtained from an oral and iv microdose were compared within the same cohort of subjects used in the study, as well as those reported in the literature. For paracetamol (oral and iv) and phenobarbital (oral), microdose data were compared with those reported in the literature only. Where 100 µg iv (14)C-doses were given alone and with an oral non-labelled therapeutic dose, excellent accord between the PK parameters was observed indicating that the disposition kinetics of the drugs tested were unaffected by the presence of therapeutic concentrations. This observation implies that any deviation from linearity following the oral therapeutic doses occurs during the absorption process.


Assuntos
Acetaminofen , Claritromicina , Fenobarbital , Propafenona , Sumatriptana , Acetaminofen/administração & dosagem , Acetaminofen/sangue , Acetaminofen/farmacocinética , Administração Oral , Adolescente , Adulto , Área Sob a Curva , Radioisótopos de Carbono/administração & dosagem , Radioisótopos de Carbono/sangue , Radioisótopos de Carbono/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Claritromicina/administração & dosagem , Claritromicina/sangue , Claritromicina/farmacocinética , Estudos Cross-Over , Relação Dose-Resposta a Droga , Humanos , Injeções Intravenosas , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Fenobarbital/administração & dosagem , Fenobarbital/sangue , Fenobarbital/farmacocinética , Propafenona/administração & dosagem , Propafenona/sangue , Propafenona/farmacocinética , Sumatriptana/administração & dosagem , Sumatriptana/sangue , Sumatriptana/farmacocinética
4.
Eur J Pharm Sci ; 40(2): 125-31, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20307657

RESUMO

A human pharmacokinetic study was performed to assess the ability of a microdose to predict the pharmacokinetics of a therapeutic dose of fexofenadine and to determine its absolute oral bioavailability. Fexofenadine was chosen to represent an unmetabolized transporter substrate (P-gP and OATP). Fexofenadine was administered to 6 healthy male volunteers in a three way cross-over design. A microdose (100microg) of (14)C-drug was administered orally (period 1) and intravenously by 30min infusion (period 2). In period 3 an intravenous tracer dose (100microg) of (14)C-drug was administered simultaneously with an oral unlabelled therapeutic dose (120mg). Plasma was collected from all 3 periods and analysed for both total (14)C content and parent drug by accelerator mass spectrometry (AMS). For period 3, plasma samples were also analysed using HPLC-fluorescence to determine total drug concentration. Urine was collected and analysed for total (14)C. Good concordance between the microdose and therapeutic dose pharmacokinetics was observed. Microdose: CL 13L/h, CL(R) 4.1L/h, V(ss) 54L, t(1/2) 16h; therapeutic dose: CL 16L/h, CL(R) 6.2L/h, V(ss) 64L, t(1/2) 12h. The absolute oral bioavailability of fexofenadine was 0.35 (microdose 0.41, therapeutic dose 0.30). Despite a 1200-fold difference in dose of fexofenadine, the microdose predicted well the pharmacokinetic parameters following a therapeutic dose for this transporter dependent compound.


Assuntos
Antialérgicos/farmacocinética , Terfenadina/análogos & derivados , Administração Oral , Adolescente , Adulto , Antialérgicos/administração & dosagem , Antialérgicos/sangue , Área Sob a Curva , Disponibilidade Biológica , Estudos Cross-Over , Relação Dose-Resposta a Droga , Meia-Vida , Humanos , Masculino , Pessoa de Meia-Idade , Terfenadina/administração & dosagem , Terfenadina/sangue , Terfenadina/farmacocinética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa