Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731400

RESUMO

Energy-level alignment is a crucial factor in the performance of thin-film devices, such as organic light-emitting diodes and photovoltaics. One way to adjust these energy levels is through chemical modification of the molecules involved. However, this approach may lead to unintended changes in the optical and/or electrical properties of the compound. An alternative method for energy-level adjustment at the interface is the use of self-assembling monolayers (SAMs). Initially, SAMs with passive spacers were employed, creating a surface dipole moment that altered the work function (WF) of the electrode. However, recent advancements have led to the synthesis of SAM molecules with active spacers. This development necessitates considering not only the modification of the electrode's WF but also the ionization energy (IE) of the molecule itself. To measure both the IE of SAM molecules and their impact on the electrode's WF, a relatively simple method is photo-electric emission spectroscopy. Solar cell performance parameters have a higher correlation coefficient with the ionization energy of SAM molecules with carbazole derivatives as spacers (up to 0.97) than the work function of the modified electrode (up to 0.88). Consequently, SAMs consisting of molecules with active spacers can be viewed as hole transport layers rather than interface layers.

2.
Nat Mater ; 20(9): 1248-1254, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33888905

RESUMO

Electronic doping of organic semiconductors is essential for their usage in highly efficient optoelectronic devices. Although molecular and metal complex-based dopants have already enabled significant progress of devices based on organic semiconductors, there remains a need for clean, efficient and low-cost dopants if a widespread transition towards larger-area organic electronic devices is to occur. Here we report dimethyl sulfoxide adducts as p-dopants that fulfil these conditions for a range of organic semiconductors. These adduct-based dopants are compatible with both solution and vapour-phase processing. We explore the doping mechanism and use the knowledge we gain to 'decouple' the dopants from the choice of counterion. We demonstrate that asymmetric p-doping is possible using solution processing routes, and demonstrate its use in metal halide perovskite solar cells, organic thin-film transistors and organic light-emitting diodes, which showcases the versatility of this doping approach.

3.
Angew Chem Int Ed Engl ; 61(5): e202113207, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34918438

RESUMO

Hybrid lead halide perovskite solar cells (PSCs) have emerged as potential competitors to silicon-based solar cells with an unprecedented increase in power conversion efficiency (PCE), nearing the breakthrough point toward commercialization. However, for hole-transporting materials, it is generally acknowledged that complex structures often create issues such as increased costs and hazardous substances in the synthetic schemes, when translated from the laboratory to manufacture on a large scale. Here, we present cyclobutane-based hole-selective materials synthesized using simple and green-chemistry inspired protocols in order to reduce costs and adverse environmental impact. A series of novel semiconductors with molecularly engineered side arms were successfully applied in perovskite solar cells. V1366-based PSCs feature impressive efficiency of 21 %, along with long-term operational stability under atmospheric environment. Most importantly, we also fabricated perovskite solar modules exhibiting a record efficiency over 19 % with an active area of 30.24 cm2 .

4.
Angew Chem Int Ed Engl ; 58(33): 11266-11272, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31165529

RESUMO

The synthesis of three enamine hole-transporting materials (HTMs) based on Tröger's base scaffold are reported. These compounds are obtained in a three-step facile synthesis from commercially available materials without the need of expensive catalysts, inert conditions or time-consuming purification steps. The best performing material, HTM3, demonstrated 18.62 % PCE in PSCs, rivaling spiro-OMeTAD in efficiency, and showing markedly superior long-term stability in non-encapsulated devices. In dopant-free PSCs, HTM3 outperformed spiro-OMeTAD by a factror of 1.6. The high glass-transition temperature (Tg =176 °C) of HTM3 also suggests promising perspectives in device applications.

5.
Chemistry ; 24(39): 9910-9918, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29742303

RESUMO

The vast majority of the hole transporting materials require the use of chemical doping as an essential step for preparation of efficient perovskite solar cells. An oxidized organic hole-transporting material, obtained during a doping procedure, could potentially be one of the weak links in the device composition. It is not uncommon for the solar cell to heat up under summer sun; therefore, all device components must possess some degree of resistance to repetitive thermal stress. In the current publication, a series of oxidized hole-transporting materials have been synthesized and their long-term stability investigated. During thermal stability testing of the films, kept at 100 °C under an inert atmosphere, it was observed that oxidized HTMs start to degrade and partly revert to original unoxidized material. It is known that oxidized HTM, formed during doping, is responsible for the increased conductivity and ultimately for better efficiency of hole extraction process in the PSC device; therefore, observed instability of the oxidized HTMs in the thin films at elevated temperatures could be one of the causes of drop in conductivity reported for the doped spiro-OMeTAD. It could also potentially be one of the reasons why perovskite solar cells lose their efficiency under prolonged thermal stress.

6.
Molecules ; 20(5): 9124-38, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25996215

RESUMO

A new cross-linkable monomer containing 1,3-diphenylethenylcarbazolyl-based hole-transporting moieties and four reactive epoxy groups, was prepared by a multistep synthesis route from 1,3-bis(2,2-diphenylethenyl)-9H-carbazol-2-ol and its application for the in situ formation of cross-linked hole transporting layers was investigated. A high concentration of flexible aliphatic epoxy chains ensures good solubility and makes this compound an attractive cross-linking agent. The synthesized compounds were characterized by various techniques, including differential scanning calorimetry, xerographic time of flight, and electron photoemission in air methods.


Assuntos
Carbazóis/química , Carbazóis/síntese química , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/síntese química , Elétrons , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Modelos Moleculares , Solubilidade
7.
Angew Chem Int Ed Engl ; 54(39): 11409-13, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26184563

RESUMO

The small-molecule-based hole-transporting material methoxydiphenylamine-substituted carbazole was synthesized and incorporated into a CH3NH3PbI3 perovskite solar cell, which displayed a power conversion efficiency of 16.91%, the second highest conversion efficiency after that of Spiro-OMeTAD. The investigated hole-transporting material was synthesized in two steps from commercially available and relatively inexpensive starting reagents. Various electro-optical measurements (UV/Vis, IV, thin-film conductivity, hole mobility, DSC, TGA, ionization potential) have been carried out to characterize the new hole-transporting material.

8.
RSC Adv ; 14(5): 2975-2982, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239447

RESUMO

Air-stable and solution-processable fluorene-based bipolar charge transporting materials (CTMs) were designed, synthesized, and analyzed. These CTMs feature anthraquinone, 9-fluorenone, and 9-dicyanofluorenylidine groups and exhibit good film formation properties for solvent processing. Quantum chemistry simulations and optical absorption measurements proved that several stable conformers and charge transfer complexes form inside the molecules. Hole mobilities in CTMs were around 10-4 to 10-5 cm2 V-1 s-1, while electron mobility in compounds with anthraquinone and 9-dicyanofluorenylidine groups was approximately one order of magnitude lower.

9.
R Soc Open Sci ; 11(5): 232019, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38721131

RESUMO

The search for novel classes of hole-transporting materials (HTMs) is a very important task in advancing the commercialization of various photovoltaic devices. Meeting specific requirements, such as charge-carrier mobility, appropriate energy levels and thermal stability, is essential for determining the suitability of an HTM for a given application. In this work, two spirobisindane-based compounds, bearing terminating hole transporting enamine units, were strategically designed and synthesized using commercially available starting materials. The target compounds exhibit adequate thermal stability; they are amorphous and their glass-transition temperatures (>150°C) are high, which minimizes the probability of direct layer crystallization. V1476 stands out with the highest zero-field hole-drift mobility, approaching 1 × 10-5 cm2 V s-1. To assess the compatibility of the highest occupied molecular orbital energy levels of the spirobisindane-based HTMs in solar cells, the solid-state ionization potential (Ip) was measured by the electron photoemission in air of the thin-film method. The favourable morphological properties, energy levels and hole mobility in combination with a simple synthesis make V1476 and related compounds promising materials for HTM applications in antimony-based solar cells and triple-cation-based perovskite solar cells.

10.
ACS Appl Mater Interfaces ; 16(1): 1206-1216, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38117238

RESUMO

A novel 9,9'-spirobifluorene derivative bearing thermally cross-linkable vinyl groups (V1382) was developed as a hole-transporting material for perovskite solar cells (PSCs). After thermal cross-linking, a smooth and solvent-resistant three-dimensional (3D) polymeric network is formed such that orthogonal solvents are no longer needed to process subsequent layers. Copolymerizing V1382 with 4,4'-thiobisbenzenethiol (dithiol) lowers the cross-linking temperature to 103 °C via the facile thiol-ene "click" reaction. The effectiveness of the cross-linked V1382/dithiol was demonstrated both as a hole-transporting material in p-i-n and as an interlayer between the perovskite and the hole-transporting layer in n-i-p PSC devices. Both devices exhibit better power conversion efficiencies and operational stability than devices using conventional PTAA or Spiro-OMeTAD hole-transporting materials.

11.
RSC Adv ; 14(21): 14973-14981, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38737649

RESUMO

New semiconductors containing fluorene or fluorenone central fragments along with phosphonic acid anchoring groups were synthesized and investigated as electron transporting materials for possible application in photovoltaic devices. These derivatives demonstrate good thermal stability and suitable electrochemical properties for effective electron transport from perovskite, Sb2S3 and Sb2Se3 absorber layers. Self-assembled fluorene and fluorenone electron-transporting materials have shown improved substrate wettability, indicating bond formation between monolayer-forming compounds and the ITO, TiO2, Sb2S3, or Sb2Se3 surface. Additionally, investigated materials have compatible energetic band alignment and can passivate perovskite interface defects, which makes them interesting candidates for application in the n-i-p structure perovskite solar cell.

12.
ACS Appl Mater Interfaces ; 16(6): 7310-7316, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38317431

RESUMO

Molecular hole-transporting materials (HTMs) having triphenylethylene central core were designed, synthesized, and employed in perovskite solar cell (PSC) devices. The synthesized HTM derivatives were obtained in a two- or three-step synthetic procedure, and their characteristics were analyzed by various thermoanalytical, optical, photophysical, and photovoltaic techniques. The most efficient PSC device recorded a 23.43% power conversion efficiency. Furthermore, the longevity of the device employing V1509 HTM surpassed that of PSC with state-of-art spiro-OMeTAD as the reference HTM.

13.
Chemistry ; 19(44): 15044-56, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24105955

RESUMO

Star-shaped charge-transporting materials with a triphenylamine (TPA) core and various phenylethenyl side arm(s) were obtained in a one-step synthetic procedure from commercially available and relatively inexpensive starting materials. Crystallinity, glass-transition temperature, size of the π-conjugated system, energy levels, and the way molecules pack in the solid state can be significantly influenced by variation of the structure of these side arm(s). An increase in the number of phenylethenyl side arms was found to hinder intramolecular motions of the TPA core, and thereby provide significant enhancement of the fluorescence quantum yield of the TPA derivatives in solution. On the other hand, a larger number of side arms facilitated exciton migration through the dense side-arm network formed in the solid state and, thus, considerably reduces fluorescence efficiency by migration-assisted nonradiative relaxation. This dense network enables charges to move more rapidly through the hole-transport material layer, which results in very good charge drift mobility (µ up to 0.017 cm(2) V (-1) s(-1)).

14.
Phys Chem Chem Phys ; 15(34): 14219-28, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23872955

RESUMO

In this work we have extended the application of a theoretical model describing the processes of all-optical poling of isomerizable molecules while taking into consideration the thermoisomerization related findings presented in the literature. A model describing all-optical poling transients using a three relaxation rate approach was contrasted with the experimental results of azophenylcarbazole doped polycarbonate measured in a wide range of temperatures from 150 to 300 K, thus covering the ß transition for the host. By means of a long timescale and low temperature, we were able to better resolve the thermoisomerization and orientational diffusion processes. The cis→trans thermoisomerization relaxation rates k1 and k2 were obtained in the range 10(-5) to 10(-2) s(-1) and the relaxation rate k3 of the orientational diffusion of the trans isomer in the range 10(-6) to 10(-4) s(-1). The rates exhibited diverse temperature dependent behaviors: the two lowest (k2,k3) manifested Arrhenius type dependencies (Ek2 = 157 meV), whereas, the highest (k1) showed a temperature dependence that is non-Arrhenius, or undistinguished for our experimental conditions. The latter was interpreted using the geometrical "adjustment" model. By investigating chromophore-polymer systems at temperatures far below Tg, we were able to uncover the situation when the cis→trans transition is switched-off and the orientational randomization is suppressed. Thus, we could consider the chromophores as "frozen".

15.
R Soc Open Sci ; 10(7): 230260, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37501661

RESUMO

Due to the ease of synthesis and the ability to easily tune properties, organic semiconductors are widely researched and used in many optoelectronic applications. Requirements such as thermal stability, appropriate energy levels and charge-carrier mobility have to be met in order to consider the suitability of an organic semiconductor for a specific application. Balancing of said properties is not a trivial task; often one characteristic is sacrificed to improve the other and therefore a search for well-balanced materials is necessary. Herein, seven new charge-transporting biphenyl-based enamine molecules are reported. The new materials were synthesized using a simple one-step reaction without the use of expensive transition metal catalysts. It was observed that subtle variations in the structure lead to notable changes in the properties. Materials exhibited high thermal stability and relatively high carrier drift mobility, reaching 2 × 10-2 cm2V-1 s-1 (for BE3) at strong electric fields. Based on the results, three materials show the potential to be applied in organic light emitting diodes and solar cells.

16.
RSC Adv ; 13(38): 26933-26939, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37692345

RESUMO

Perovskite solar cells are among the most promising photovoltaic technologies in academia and have the potential to become commercially available in the near future. However, there are still a few unresolved issues regarding device lifetime and fabrication cost of perovskite solar cells in order to be competitive with existing technologies. Herein, we report small organic molecules with introduced vinyl groups as hole transporting materials, which are capable of undergoing thermal polymerization, forming solvent-resistant 3D networks. Novel compounds have been synthesized from relatively inexpensive starting materials and their purification is less time-consuming when compared to polymers; therefore this type of hole transporter can be a promising alternative to lower the manufacturing cost of perovskite solar cells.

17.
Mater Horiz ; 10(4): 1292-1300, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786547

RESUMO

Developing efficient and stable organic photovoltaics (OPVs) is crucial for the technology's commercial success. However, combining these key attributes remains challenging. Herein, we incorporate the small molecule 2-((3,6-dibromo-9H-carbazol-9-yl)ethyl)phosphonic acid (Br-2PACz) between the bulk-heterojunction (BHJ) and a 7 nm-thin layer of MoO3 in inverted OPVs, and study its effects on the cell performance. We find that the Br-2PACz/MoO3 hole-extraction layer (HEL) boosts the cell's power conversion efficiency (PCE) from 17.36% to 18.73% (uncertified), making them the most efficient inverted OPVs to date. The factors responsible for this improvement include enhanced charge transport, reduced carrier recombination, and favourable vertical phase separation of donor and acceptor components in the BHJ. The Br-2PACz/MoO3-based OPVs exhibit higher operational stability under continuous illumination and thermal annealing (80 °C). The T80 lifetime of OPVs featuring Br-2PACz/MoO3 - taken as the time over which the cell's PCE reduces to 80% of its initial value - increases compared to MoO3-only cells from 297 to 615 h upon illumination and from 731 to 1064 h upon continuous heating. Elemental analysis of the BHJs reveals the enhanced stability to originate from the partially suppressed diffusion of Mo ions into the BHJ and the favourable distribution of the donor and acceptor components induced by the Br-2PACz.

18.
ACS Appl Energy Mater ; 6(7): 3822-3833, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37064413

RESUMO

Fluorene-based hole transport materials (HTMs) with terminating thiophene units are explored, for the first time, for antimony sulfide (Sb2S3) solar cells. These HTMs possess largely simplified synthesis processes and high yields compared to the conventional expensive hole conductors making them reasonably economical. The thiophene unit-linked HTMs have been successfully demonstrated in ultrasonic spray-deposited Sb2S3 solar cells resulting in efficiencies in the range of 4.7-4.9% with an average visible transmittance (AVT) of 30-33% (400-800 nm) for the cell stack without metal contact, while the cells fabricated using conventional P3HT have yielded an efficiency of 4.7% with an AVT of 26%. The study puts forward cost-effective and transparent HTMs that avoid a post-coating activation at elevated temperatures like P3HT, devoid of parasitic absorption losses in the visible region and are demonstrated to be well aligned for the band edges of Sb2S3 thereby ascertaining their suitability for Sb2S3 solar cells and are potential candidates for semitransparent applications.

19.
Chem Mater ; 35(15): 5914-5923, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576588

RESUMO

A group of small-molecule hole-transporting materials (HTMs) that are based on fluorenylidene fragments were synthesized and tested in perovskite solar cells (PSCs). The investigated compounds were synthesized by a facile two-step synthesis, and their properties were measured using thermoanalytical, optoelectronic, and photovoltaic methods. The champion PSC device that was doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) reached a power conversion efficiency of 22.83%. The longevity of the PSC device with the best performing HTM, V1387, was evaluated in different conditions and compared to that of 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-MeOTAD), showing improved stability. This work provides an alternative HTM strategy for fabricating efficient and stable PSCs.

20.
Adv Mater ; 35(25): e2300720, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36934398

RESUMO

Defective and perfect sites naturally exist within electronic semiconductors, and considerable efforts to reduce defects to improve the performance of electronic devices, especially in hybrid organic-inorganic perovskites (ABX3 ), are undertaken. Herein, foldable hole-transporting materials (HTMs) are developed, and they extend the wavefunctions of A-site cations of perovskite, which, as hybridized electronic states, link the trap states (defective site) and valence band edge (perfect site) between the naturally defective and perfect sites of the perovskite surface, finally converting the discrete trap states of the perovskite as the continuous valence band to reduce trap recombination. Tailoring the foldability of the HTMs tunes the wavefunctions between defective and perfect surface sites, allowing the power conversion efficiency of a small cell to reach 23.22% and that of a mini-module (6.5 × 7 cm, active area = 30.24 cm2 ) to reach as high as 21.71% with a fill factor of 81%, the highest value reported for non-spiro-OMeTAD-based perovskite solar modules.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa