Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 149(2): 640-649.e5, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34343561

RESUMO

BACKGROUND: A major issue with the current management of psoriasis is our inability to predict treatment response. OBJECTIVE: Our aim was to evaluate the ability to use baseline molecular expression profiling to assess treatment outcome for patients with psoriasis. METHODS: We conducted a longitudinal study of 46 patients with chronic plaque psoriasis treated with anti-TNF agent etanercept, and molecular profiles were assessed in more than 200 RNA-seq samples. RESULTS: We demonstrated correlation between clinical response and molecular changes during the course of the treatment, particularly for genes responding to IL-17A/TNF in keratinocytes. Intriguingly, baseline gene expressions in nonlesional, but not lesional, skin were the best marker of treatment response at week 12. We identified USP18, a known regulator of IFN responses, as positively correlated with Psoriasis Area and Severity Index (PASI) improvement (P = 9.8 × 10-4) and demonstrate its role in regulating IFN/TNF responses in keratinocytes. Consistently, cytokine gene signatures enriched in baseline nonlesional skin expression profiles had strong correlations with PASI improvement. Using this information, we developed a statistical model for predicting PASI75 (ie, 75% of PASI improvement) at week 12, achieving area under the receiver-operating characteristic curve value of 0.75 and up to 80% accurate PASI75 prediction among the top predicted responders. CONCLUSIONS: Our results illustrate feasibility of assessing drug response in psoriasis using nonlesional skin and implicate involvement of IFN regulators in anti-TNF responses.


Assuntos
Citocinas/biossíntese , Psoríase/tratamento farmacológico , Pele/imunologia , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Citocinas/genética , Humanos , Estudos Longitudinais , Psoríase/imunologia , RNA-Seq , Índice de Gravidade de Doença , Transcriptoma
2.
Exp Dermatol ; 31(7): 1036-1047, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35213752

RESUMO

Psoriasis vulgaris is an inflammatory skin disease that affects 2%-3% of the population worldwide. One of the major challenges in discovering novel therapies is the poor translatability of animal models to human disease. Therefore, it is imperative to develop human preclinical models of psoriasis that are amenable to pharmacological intervention. Here, we report a 3-D reconstituted human epidermis (RHE) culture system treated with cytokines commonly associated with psoriasis (TNFα, IL-17A and IL-22) that reproduced some key features of the human disease. The effects on epidermal morphology, gene transcription and cytokine production, which are dysregulated in psoriasis were assessed. Certain morphological features of psoriatic epidermis were evident in cytokine-stimulated RHEs, including hypogranulosis and parakeratosis. In addition, RHEs responded to a cytokine mix in a dose-dependent manner by expressing genes and proteins associated with impaired keratinocyte differentiation (keratin 10/K10, loricrin), innate immune responses (S100A7, DEFB4, elafin) and inflammation (IL-1α, IL-6, IL-8, IL-10, IL-12/23p40, IL-36γ, GM-CSF and IFNγ) typical of psoriasis. These disease-relevant changes in morphology, gene transcription and cytokine production were robustly attenuated by pharmacologically blocking TNFα/IL-17A-induced NF-κB activation with IKK-2 inhibitor IV. Conversely, inhibition of IL-22-induced JAK1 signalling with ABT-317 strongly attenuated morphological features of the disease but had no effect on NFκB-dependent cytokine production, suggesting distinct mechanisms of action by the cytokines driving psoriasis. These data support the use of cytokine-induced RHE models for identifying and targeting keratinocyte signalling pathways important for disease progression and may provide translational insights into novel keratinocyte mechanisms for novel psoriasis therapies.


Assuntos
Interleucina-17 , Psoríase , Animais , Humanos , Interleucina-17/metabolismo , Queratinócitos/metabolismo , NF-kappa B/metabolismo , Psoríase/metabolismo , Pele/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
3.
FASEB J ; 34(1): 1652-1664, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914670

RESUMO

Conditions such as asthma and inflammatory bowel disease are characterized by aberrant smooth muscle contraction. It has proven difficult to develop human cell-based models that mimic acute muscle contraction in 2D in vitro cultures due to the nonphysiological chemical and mechanical properties of lab plastics that do not allow for muscle cell contraction. To enhance the relevance of in vitro models for human disease, we describe how functional 3D smooth muscle tissue that exhibits physiological and pharmacologically relevant acute contraction and relaxation responses can be reproducibly fabricated using a unique microfluidic 3D bioprinting technology. Primary human airway and intestinal smooth muscle cells were printed into rings of muscle tissue at high density and viability. Printed tissues contracted to physiological concentrations of histamine (0.01-100 µM) and relaxed to salbutamol, a pharmacological compound used to relieve asthmatic exacerbations. The addition of TGFß to airway muscle rings induced an increase in unstimulated muscle shortening and a decreased response to salbutamol, a phenomenon which also occurs in chronic lung diseases. Results indicate that the 3D bioprinted smooth muscle is a physiologically relevant in vitro model that can be utilized to study disease pathways and the effects of novel therapeutics on acute contraction and chronic tissue stenosis.


Assuntos
Bioimpressão/métodos , Microfluídica/métodos , Músculo Liso/citologia , Miócitos de Músculo Liso/citologia , Sistema Respiratório/citologia , Albuterol/farmacologia , Asma/tratamento farmacológico , Asma/patologia , Células Cultivadas , Humanos , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Impressão Tridimensional , Sistema Respiratório/efeitos dos fármacos , Engenharia Tecidual/métodos
4.
Biol Reprod ; 103(3): 487-496, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32614039

RESUMO

To investigate genomic pathways that may influence physiology and infectivity during the menstrual cycle, RNA sequence analysis was performed on patient-matched engineered ectocervical tissue after follicular and luteal phase (LP) hormone treatments. We developed distinct cellular, molecular, and biological profiles in ectocervical epithelium dependent on the menstrual cycle phase. Follicular phase hormones were associated with proliferation, transcription, and cell adhesion, while LP samples expressed genes involved in immune cell recruitment, inflammation, and protein modifications. Additionally, our analysis revealed mucins not previously reported in ectocervical tissue, which could play an important role in fertility and disease prevention. This study provides insight into the phenomenon of increased LP vulnerability to infection and identifies potential targets for future research.


Assuntos
Colo do Útero/metabolismo , Fase Folicular/fisiologia , Regulação da Expressão Gênica/genética , Fase Luteal/fisiologia , Ciclo Menstrual/fisiologia , Engenharia Tecidual , Adulto , Adesão Celular , Proliferação de Células , Colo do Útero/citologia , Análise por Conglomerados , Epitélio/metabolismo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Hormônios/farmacologia , Humanos , Modelos Anatômicos , Mucinas/fisiologia
5.
Biol Reprod ; 103(3): 497-507, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32401296

RESUMO

There is a shortage of research models that adequately represent the unique mucosal environment of human ectocervix, limiting development of new therapies for treating infertility, infection, or cancer. We developed three microphysiologic human ectocervix models to study hormone action during homeostasis. First, we reconstructed ectocervix using decellularized extracellular matrix scaffolds, which supported cell integration and could be clinically useful. Secondly, we generated organotypic systems consisting of ectocervical explants co-cultured with murine ovaries or cycling exogenous hormones, which mimicked human menstrual cycles. Finally, we engineered ectocervix tissue consisting of tissue-specific stromal-equivalents and fully-differentiated epithelium that mimicked in vivo physiology, including squamous maturation, hormone response, and mucin production, and remained viable for 28 days in vitro. The localization of differentiation-dependent mucins in native and engineered tissue was identified for the first time, which will allow increased efficiency in mucin targeting for drug delivery. In summary, we developed and characterized three microphysiologic human ectocervical tissue models that will be useful for a variety of research applications, including preventative and therapeutic treatments, drug and toxicology studies, and fundamental research on hormone action in a historically understudied tissue that is critical for women's health.


Assuntos
Colo do Útero/fisiologia , Sistema Endócrino/fisiologia , Modelos Biológicos , Comunicação Parácrina/fisiologia , Animais , Sistemas de Liberação de Medicamentos , Matriz Extracelular , Feminino , Hormônios/fisiologia , Humanos , Menstruação/fisiologia , Camundongos , Mucinas/biossíntese , Mucosa/fisiologia , Gravidez , RNA/biossíntese , RNA/genética , Engenharia Tecidual
6.
J Cell Sci ; 130(1): 111-118, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815408

RESUMO

EphA2 is a receptor tyrosine kinase that helps to maintain epidermal tissue homeostasis. A proximity-dependent biotin identification (BioID) approach was used to identify proteins in close proximity to EphA2 within primary human keratinocytes and three-dimensional (3D) reconstituted human epidermis (RHE) cultures to map a putative protein interaction network for this membrane receptor that exhibits a polarized distribution in stratified epithelia. Although a subset of known EphA2 interactors were identified in the BioID screen, >97% were uniquely detected in keratinocytes with over 50% of these vicinal proteins only present in 3D human epidermal culture. Afadin (AFDN), a cytoskeletal and junction-associated protein, was present in 2D and 3D keratinocyte cultures, and validated as a so-far-unknown EphA2-interacting protein. Loss of EphA2 protein disrupted the subcellular distribution of afadin and occludin in differentiated keratinocytes, leading to impairment of tight junctions. Collectively, these studies illustrate the use of the BioID approach in order to map receptor interaction networks in 3D human epithelial cultures, and reveal a positive regulatory role for EphA2 in the organization of afadin and epidermal tight junctions.


Assuntos
Epiderme/metabolismo , Queratinócitos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteômica , Receptor EphA2/metabolismo , Junções Íntimas/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Células Cultivadas , Proteínas de Escherichia coli/metabolismo , Humanos , Recém-Nascido , Masculino , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/metabolismo , Reprodutibilidade dos Testes
7.
Ann Rheum Dis ; 77(11): 1653-1664, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30021804

RESUMO

OBJECTIVE: Skin inflammation and photosensitivity are common in patients with cutaneous lupus erythematosus (CLE) and systemic lupus erythematosus (SLE), yet little is known about the mechanisms that regulate these traits. Here we investigate the role of interferon kappa (IFN-κ) in regulation of type I interferon (IFN) and photosensitive responses and examine its dysregulation in lupus skin. METHODS: mRNA expression of type I IFN genes was analysed from microarray data of CLE lesions and healthy control skin. Similar expression in cultured primary keratinocytes, fibroblasts and endothelial cells was analysed via RNA-seq. IFNK knock-out (KO) keratinocytes were generated using CRISPR/Cas9. Keratinocytes stably overexpressing IFN-κ were created via G418 selection of transfected cells. IFN responses were assessed via phosphorylation of STAT1 and STAT2 and qRT-PCR for IFN-regulated genes. Ultraviolet B-mediated apoptosis was analysed via TUNEL staining. In vivo protein expression was assessed via immunofluorescent staining of normal and CLE lesional skin. RESULTS: IFNK is one of two type I IFNs significantly increased (1.5-fold change, false discovery rate (FDR) q<0.001) in lesional CLE skin. Gene ontology (GO) analysis showed that type I IFN responses were enriched (FDR=6.8×10-04) in keratinocytes not in fibroblast and endothelial cells, and this epithelial-derived IFN-κ is responsible for maintaining baseline type I IFN responses in healthy skin. Increased levels of IFN-κ, such as seen in SLE, amplify and accelerate responsiveness of epithelia to IFN-α and increase keratinocyte sensitivity to UV irradiation. Notably, KO of IFN-κ or inhibition of IFN signalling with baricitinib abrogates UVB-induced apoptosis. CONCLUSION: Collectively, our data identify IFN-κ as a critical IFN in CLE pathology via promotion of enhanced IFN responses and photosensitivity. IFN-κ is a potential novel target for UVB prophylaxis and CLE-directed therapy.


Assuntos
Epiderme/imunologia , Interferon Tipo I/biossíntese , Lúpus Eritematoso Cutâneo/complicações , Transtornos de Fotossensibilidade/etiologia , Adulto , Células Cultivadas , Células Dendríticas/imunologia , Feminino , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Queratinócitos/imunologia , Lúpus Eritematoso Cutâneo/imunologia , Masculino , Pessoa de Meia-Idade , Transtornos de Fotossensibilidade/imunologia , RNA Mensageiro/genética , Pele/imunologia , TYK2 Quinase/imunologia , Regulação para Cima/imunologia
8.
Exp Cell Res ; 358(1): 58-64, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28322822

RESUMO

During development, cells of seemingly homogenous character sort themselves out into distinct compartments in order to generate cell types with specialized features that support tissue morphogenesis and function. This process is often driven by receptors at the cell membrane that probe the extracellular microenvironment for specific ligands and alter downstream signaling pathways impacting transcription, cytoskeletal organization, and cell adhesion to regulate cell sorting and subsequent boundary formation. This review will focus on two of these receptor families, Eph and Notch, both of which are intrinsically non-adhesive and are activated by a unique set of ligands that are asymmetrically distributed from their receptor on neighboring cells. Understanding the requirement of asymmetric ligand-receptor signaling at the membrane under homeostatic conditions gives insight into how misregulation of these pathways contributes to boundary disruption in diseases like cancer.


Assuntos
Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Efrinas/metabolismo , Morfogênese/fisiologia , Receptores da Família Eph/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos
9.
Biol Reprod ; 96(5): 971-981, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28449068

RESUMO

Three-dimensional (3D) in vitro models have been established to study the physiology and pathophysiology of the endometrium. With emerging evidence that the native extracellular matrix (ECM) provides appropriate cues and growth factors essential for tissue homeostasis, we describe, a novel 3D endometrium in vitro model developed from decellularized human endometrial tissue repopulated with primary endometrial cells. Analysis of the decellularized endometrium using mass spectrometry revealed an enrichment of cell adhesion molecules, cytoskeletal proteins, and ECM proteins such as collagen IV and laminin. Primary endometrial cells within the recellularized scaffolds proliferated and remained viable for an extended period of time in vitro. In order to evaluate the hormonal response of cells within the scaffolds, the recellularized scaffolds were treated with a modified 28-day hormone regimen to mimic the human menstrual cycle. At the end of 28 days, the cells within the endometrial scaffold expressed both estrogen and progesterone receptors. In addition, decidualization markers, IGFBP-1 and prolactin, were secreted upon addition of dibutyryl cyclic AMP indicative of a decidualization response. This 3D model of the endometrium provides a new experimental tool to study endometrial biology and drug testing.


Assuntos
Endométrio/efeitos dos fármacos , Hormônios/farmacologia , Adolescente , Adulto , Moléculas de Adesão Celular/metabolismo , Colágeno Tipo IV/metabolismo , Proteínas do Citoesqueleto/metabolismo , Endométrio/citologia , Matriz Extracelular/metabolismo , Feminino , Humanos , Técnicas In Vitro , Laminina/metabolismo , Ciclo Menstrual/fisiologia , Cultura Primária de Células , Proteômica , Receptores de Estrogênio/biossíntese , Receptores de Progesterona/biossíntese , Adulto Jovem
10.
Hum Mol Genet ; 23(15): 4064-76, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24643277

RESUMO

iRHOM2 is a highly conserved, catalytically inactive member of the Rhomboid family, which has recently been shown to regulate the maturation of the multi-substrate ectodomain sheddase enzyme ADAM17 (TACE) in macrophages. Dominant iRHOM2 mutations are the cause of the inherited cutaneous and oesophageal cancer-susceptibility syndrome tylosis with oesophageal cancer (TOC), suggesting a role for this protein in epithelial cells. Here, using tissues derived from TOC patients, we demonstrate that TOC-associated mutations in iRHOM2 cause an increase in the maturation and activity of ADAM17 in epidermal keratinocytes, resulting in significantly upregulated shedding of ADAM17 substrates, including EGF-family growth factors and pro-inflammatory cytokines. This activity is accompanied by increased EGFR activity, increased desmosome processing and the presence of immature epidermal desmosomes, upregulated epidermal transglutaminase activity and heightened resistance to Staphylococcal infection in TOC keratinocytes. Many of these features are consistent with the presence of a constitutive wound-healing-like phenotype in TOC epidermis, which may shed light on a novel pathway in skin repair, regeneration and inflammation.


Assuntos
Proteínas ADAM/genética , Proteínas de Transporte/genética , Epiderme/metabolismo , Neoplasias Esofágicas/genética , Queratinócitos/metabolismo , Ceratodermia Palmar e Plantar/genética , Infecções Cutâneas Estafilocócicas/genética , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/metabolismo , Proteína ADAM17 , Proteínas de Transporte/metabolismo , Citocinas/biossíntese , Desmossomos/metabolismo , Desmossomos/patologia , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Epiderme/microbiologia , Epiderme/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/microbiologia , Neoplasias Esofágicas/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Queratinócitos/microbiologia , Queratinócitos/patologia , Ceratodermia Palmar e Plantar/metabolismo , Ceratodermia Palmar e Plantar/microbiologia , Ceratodermia Palmar e Plantar/patologia , Masculino , Mutação , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Infecções Cutâneas Estafilocócicas/metabolismo , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/patologia , Staphylococcus aureus/fisiologia , Transglutaminases/genética , Transglutaminases/metabolismo
11.
Stem Cells ; 33(5): 1642-56, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25639731

RESUMO

The stem cell niche is thought to affect cell cycle quiescence, proliferative capacity, and communication between stem cells and their neighbors. How these activities are controlled is not completely understood. Here we define a microRNA family (miRs-103/107) preferentially expressed in the stem cell-enriched limbal epithelium that regulates and integrates these stem cell characteristics. miRs-103/107 target the ribosomal kinase p90RSK2, thereby arresting cells in G0/G1 and contributing to a slow-cycling phenotype. Furthermore, miRs-103/107 increase the proliferative capacity of keratinocytes by targeting Wnt3a, which enhances Sox9 and YAP1 levels and thus promotes a stem cell phenotype. This miRNA family also regulates keratinocyte cell-cell communication by targeting: (a) the scaffolding protein NEDD9, preserving E-cadherin-mediated cell adhesion; and (b) the tyrosine phosphatase PTPRM, which negatively regulates connexin 43-based gap junctions. We propose that such regulation of cell communication and adhesion molecules maintains the integrity of the stem cell niche ultimately preserving self-renewal, a hallmark of epithelial stem cells.


Assuntos
Células Epiteliais/metabolismo , MicroRNAs/metabolismo , Células-Tronco/metabolismo , Animais , Caderinas/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Junções Comunicantes/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Limbo da Córnea/citologia , Masculino , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Células-Tronco/efeitos dos fármacos , Proteína Wnt3A/farmacologia
12.
Hum Mol Genet ; 22(3): 531-43, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23108156

RESUMO

Ankyloblepharon, ectodermal defects, cleft lip/palate (AEC) syndrome is a rare autosomal dominant disorder caused by mutations in the p63 gene, essential for embryonic development of stratified epithelia. The most severe cutaneous manifestation of this disorder is the long-lasting skin fragility associated with severe skin erosions after birth. Using a knock-in mouse model for AEC syndrome, we found that skin fragility was associated with microscopic blistering between the basal and suprabasal compartments of the epidermis and reduced desmosomal contacts. Expression of desmosomal cadherins and desmoplakin was strongly reduced in AEC mutant keratinocytes and in newborn epidermis. A similar impairment in desmosome gene expression was observed in human keratinocytes isolated from AEC patients, in p63-depleted keratinocytes and in p63 null embryonic skin, indicating that p63 mutations causative of AEC syndrome have a dominant-negative effect on the wild-type p63 protein. Among the desmosomal components, desmocollin 3, desmoplakin and desmoglein 1 were the most significantly reduced by mutant p63 both at the RNA and protein levels. Chromatin immunoprecipitation experiments and transactivation assays revealed that p63 controls these genes at the transcriptional level. Consistent with reduced desmosome function, AEC mutant and p63-deficient keratinocytes had an impaired ability to withstand mechanical stress, which was alleviated by epidermal growth factor receptor inhibitors known to stabilize desmosomes. Our study reveals that p63 is a crucial regulator of a subset of desmosomal genes and that this function is impaired in AEC syndrome. Reduced mechanical strength resulting from p63 mutations can be alleviated pharmacologically by increasing desmosome adhesion with possible therapeutic implications.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Desmossomos/metabolismo , Displasia Ectodérmica/genética , Anormalidades do Olho/genética , Proteínas de Membrana/metabolismo , Animais , Adesão Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Fenda Labial/patologia , Fissura Palatina/patologia , Clonagem Molecular , Desmossomos/genética , Displasia Ectodérmica/patologia , Epiderme/metabolismo , Epiderme/fisiopatologia , Epitélio/metabolismo , Epitélio/fisiopatologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Anormalidades do Olho/patologia , Pálpebras/anormalidades , Pálpebras/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Queratinócitos/metabolismo , Luciferases/análise , Luciferases/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Pele/metabolismo , Pele/fisiopatologia
13.
Am J Pathol ; 184(12): 3262-71, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25455687

RESUMO

Factor inhibiting hypoxia-inducible factor 1 (FIH-1; official symbol HIF1AN) is a hydroxylase that negatively regulates hypoxia-inducible factor 1α but also targets other ankyrin repeat domain-containing proteins such as Notch receptor to limit epithelial differentiation. We show that FIH-1 null mutant mice exhibit delayed wound healing. Importantly, in vitro scratch wound assays demonstrate that the positive role of FIH-1 in migration is independent of Notch signaling, suggesting that this hydroxylase targets another ankyrin repeat domain-containing protein to positively regulate motogenic signaling pathways. Accordingly, FIH-1 increases epidermal growth factor receptor (EGFR) signaling, which in turn enhances keratinocyte migration via mitogen-activated protein kinase pathway, leading to extracellular signal-regulated kinase 1/2 activation. Our studies identify leucine-rich repeat kinase 1 (LRRK1), a key regulator of the EGFR endosomal trafficking and signaling, as an FIH-1 binding partner. Such an interaction prevents the formation of an EGFR/LRRK1 complex, necessary for proper EGFR turnover. The identification of LRRK1 as a novel target for FIH-1 provides new insight into how FIH-1 functions as a positive regulator of epithelial migration.


Assuntos
Receptores ErbB/metabolismo , Queratinócitos/citologia , Oxigenases de Função Mista/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Movimento Celular , Células Cultivadas , Epitélio/embriologia , Humanos , Imuno-Histoquímica , Queratinócitos/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Oxigenases de Função Mista/genética , Ligação Proteica , Transdução de Sinais , Cicatrização
14.
Cell Tissue Res ; 360(3): 501-12, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25693896

RESUMO

Desmosomes are cell-cell adhesive organelles with a well-known role in forming strong intercellular adhesion during embryogenesis and in adult tissues subject to mechanical stress, such as the heart and skin. More recently, desmosome components have also emerged as cell signaling regulators. Loss of expression or interference with the function of desmosome molecules results in diseases of the heart and skin and contributes to cancer progression. However, the underlying molecular mechanisms that result in inherited and acquired disorders remain poorly understood. To address this question, researchers are directing their studies towards determining the functions that occur inside and outside of the junctions and the extent to which functions are adhesion-dependent or independent. This review focuses on recent discoveries that provide insights into the role of desmosomes and desmosome components in cell signaling and disease; wherever possible, we address molecular functions within and outside of the adhesive structure.


Assuntos
Desmossomos/metabolismo , Doença , Transdução de Sinais , Animais , Humanos , Proteínas/metabolismo
15.
Proc Natl Acad Sci U S A ; 109(35): 14030-4, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22891326

RESUMO

Notch plays a critical role in the transition from proliferation to differentiation in the epidermis and corneal epithelium. Furthermore, aberrant Notch signaling is a feature of diseases like psoriasis, eczema, nonmelanoma skin cancer, and melanoma where differentiation and proliferation are impaired. Whereas much is known about the downstream events following Notch signaling, factors responsible for negatively regulating Notch receptor signaling after ligand activation are incompletely understood. Notch can undergo hydroxylation by factor-inhibiting hypoxia-inducible factor 1 (FIH-1); however, the biological significance of this phenomenon is unclear. Here we show that FIH-1 expression is up-regulated in diseased epidermis and corneal epithelium. Elevating FIH-1 levels in primary human epidermal keratinocytes (HEKs) and human corneal epithelial keratinocytes (HCEKs) impairs differentiation in submerged cultures and in a "three-dimensional" organotypic raft model of human epidermis, in part, via a coordinate decrease in Notch signaling. Knockdown of FIH-1 enhances keratinocyte differentiation. Loss of FIH-1 in vivo increased Notch activity in the limbal epithelium, resulting in a more differentiated phenotype. microRNA-31 (miR-31) is an endogenous negative regulator of FIH-1 expression that results in keratinocyte differentiation, mediated by Notch activation. Ectopically expressing miR-31 in an undifferentiated corneal epithelial cell line promotes differentiation and recapitulates a corneal epithelium in a three-dimensional raft culture model. Our results define a previously unknown mechanism for keratinocyte fate decisions where Notch signaling potential is, in part, controlled through a miR-31/FIH-1 nexus.


Assuntos
Queratinócitos/citologia , Queratinócitos/fisiologia , MicroRNAs/metabolismo , Oxigenases de Função Mista/metabolismo , Psoríase/metabolismo , Proteínas Repressoras/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Transformada , Células Epidérmicas , Epiderme/fisiologia , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Epitélio Corneano/citologia , Epitélio Corneano/fisiologia , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Oxigenases de Função Mista/genética , Técnicas de Cultura de Órgãos , Fenótipo , Psoríase/genética , Psoríase/patologia , Receptores Notch/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais/fisiologia
16.
Semin Cell Dev Biol ; 23(1): 92-101, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22040910

RESUMO

Eph receptor tyrosine kinases mediate cell-cell communication by interacting with ephrin ligands residing on adjacent cell surfaces. In doing so, these juxtamembrane signaling complexes provide important contextual information about the cellular microenvironment that helps orchestrate tissue morphogenesis and maintain homeostasis. Eph/ephrin signaling has been implicated in various aspects of mammalian skin physiology, with several members of this large family of receptor tyrosine kinases and their ligands present in the epidermis, hair follicles, sebaceous glands, and underlying dermis. This review focuses on the emerging role of Eph receptors and ephrins in epidermal keratinocytes where they can modulate proliferation, migration, differentiation, and death. The activation of Eph receptors by ephrins at sites of cell-cell contact also appears to play a key role in the maturation of intercellular junctional complexes as keratinocytes move out of the basal layer and differentiate in the suprabasal layers of this stratified, squamous epithelium. Furthermore, alterations in the epidermal Eph/ephrin axis have been associated with cutaneous malignancy, wound healing defects and inflammatory skin conditions. These collective observations suggest that the Eph/ephrin cell-cell communication pathway may be amenable to therapeutic intervention for the purpose of restoring epidermal tissue homeostasis and integrity in dermatological disorders.


Assuntos
Diferenciação Celular , Efrinas/fisiologia , Epiderme/metabolismo , Receptores da Família Eph/fisiologia , Transdução de Sinais , Animais , Adesão Celular , Proliferação de Células , Efrinas/metabolismo , Epiderme/patologia , Humanos , Queratinócitos/metabolismo , Queratinócitos/fisiologia , Receptores da Família Eph/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Cicatrização
18.
J Invest Dermatol ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38520417

RESUMO

Intricate signaling systems are required to maintain homeostasis and promote differentiation in the epidermis. Receptor tyrosine kinases are central in orchestrating these systems in epidermal keratinocytes. In particular, EPHA2 and EGFR transduce distinct signals to dictate keratinocyte fate, yet how these cell communication networks are integrated has not been investigated. Our work shows that loss of EPHA2 impairs keratinocyte stratification, differentiation, and barrier function. To determine the mechanism of this dysfunction, we drew from our proteomics data of potential EPHA2 interacting proteins. We identified EGFR as a high-ranking EPHA2 interactor and subsequently validated this interaction. We found that when EPHA2 is reduced, EGFR activation and downstream signaling are intensified and sustained. Evidence indicates that prolonged SRC association contributes to the increase in EGFR signaling. We show that hyperactive EGFR signaling underlies the differentiation defect caused by EPHA2 knockdown because EGFR inhibition restores differentiation in EPHA2-deficient 3-dimensional skin organoids. Our data implicate a mechanism whereby EPHA2 restrains EGFR signaling, allowing for fine tuning in the processes of terminal differentiation and barrier formation. Taken together, we purport that crosstalk between receptor tyrosine kinases EPHA2 and EGFR is critical for epidermal differentiation.

19.
Am J Pathol ; 177(6): 2921-37, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21075858

RESUMO

Desmoglein 1 (Dsg1) is a desmosomal cadherin that is essential to epidermal integrity. In the blistering diseases bullous impetigo and staphylococcal scalded-skin syndrome, pathogenesis depends on cleavage of Dsg1 by a bacterial protease, exfoliative toxin A, which removes residues 1 to 381 of the Dsg1 ectodomain. However, the cellular responses to Dsg1 cleavage that precipitate keratinocyte separation to induce blister formation are unknown. Here, we show that ectodomain-deleted Dsg1 (Δ381-Dsg1) mimics the toxin-cleaved cadherin, disrupts desmosomes, and reduces the mechanical integrity of keratinocyte sheets. In addition, we demonstrate that truncated Dsg1 remains associated with its catenin partner, plakoglobin, and causes a reduction in the levels of endogenous desmosomal cadherins in a dose-dependent manner, leading us to hypothesize that plakoglobin sequestration by truncated Dsg1 destabilizes other cadherins. Accordingly, a triple-point mutant of the ectodomain-deleted cadherin, which is uncoupled from plakoglobin, does not impair adhesion, indicating that this interaction is essential to the pathogenic potential of truncated Dsg1. Moreover, we demonstrate that increasing plakoglobin levels rescues cadherin expression, desmosome organization, and functional adhesion in cells expressing Δ381-Dsg1 or treated with exfoliative toxin A. Finally, we report that histone deacetylase inhibition up-regulates desmosomal cadherins and prevents the loss of adhesion induced by Dsg1 truncation. These findings further our understanding of the mechanism of exfoliative toxin-induced pathology and suggest novel strategies to suppress blistering in bulbous impetigo and staphylococcal scalded-skin syndrome.


Assuntos
Vesícula/etiologia , Dermatite Esfoliativa/etiologia , Desmogleína 1/genética , Exfoliatinas/efeitos adversos , Domínios e Motivos de Interação entre Proteínas/genética , Deleção de Sequência/fisiologia , gama Catenina/fisiologia , Vesícula/genética , Vesícula/patologia , Adesão Celular/genética , Células Cultivadas , Dermatite Esfoliativa/genética , Dermatite Esfoliativa/patologia , Desmogleína 1/química , Desmogleína 1/metabolismo , Desmogleína 1/fisiologia , Caderinas de Desmossomos/química , Caderinas de Desmossomos/genética , Caderinas de Desmossomos/metabolismo , Caderinas de Desmossomos/fisiologia , Exfoliatinas/farmacologia , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Queratinócitos/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Infecções Cutâneas Estafilocócicas/genética , Infecções Cutâneas Estafilocócicas/metabolismo , Infecções Cutâneas Estafilocócicas/patologia , Transdução Genética , gama Catenina/genética , gama Catenina/metabolismo
20.
FASEB J ; 24(10): 3950-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20530248

RESUMO

microRNA-205 (miR-205) and miR-184 coordinately regulate the lipid phosphatase SHIP2 for Akt survival signaling in keratinocytes. As the PI3K-Akt pathway has also been implicated in regulating the actin cytoskeleton and cell motility, we investigated the role that these 2 miRNAs play in keratinocyte migration. We used antagomirs (antago) to reduce the levels of miR-205 and miR-184 in primary human epidermal keratinocytes (HEKs) and corneal epithelial keratinocytes (HCEKs) as well as direct SHIP2 silencing using siRNA oligos. Treatment of HEKs and HCEKs with antago-205 increased SHIP2 levels and impaired the ability of these cells to seal linear scratch wounds compared with untreated or irrelevant-antago treatments. In contrast, AKT signaling was enhanced and wounds sealed faster in HCEKs where miR-184 was suppressed, enabling miR-205 to inhibit SHIP2. Similar increases in migration were observed following direct SHIP2 silencing in HEKs. Furthermore, down-regulation of miR-205 resulted in an increase in Rho-ROCKI activity, phosphorylation of the actin severing protein cofilin, and a corresponding diminution of filamentous actin. The connection among miR-205, RhoA-ROCKI-cofilin inactivation, and the actin cytoskeleton represents a novel post-translational mechanism for the regulation of normal human keratinocyte migration.


Assuntos
Movimento Celular/fisiologia , Regulação da Expressão Gênica/genética , Cabelo/metabolismo , Queratinócitos/citologia , MicroRNAs/fisiologia , Pele/metabolismo , Animais , Sequência de Bases , Western Blotting , Células Cultivadas , Primers do DNA , Citometria de Fluxo , Cabelo/citologia , Hibridização In Situ , Camundongos , Pele/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa