Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2015): 20231243, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38229520

RESUMO

Thermal soaring conditions above the sea have long been assumed absent or too weak for terrestrial migrating birds, forcing obligate soarers to take long detours and avoid sea-crossing, and facultative soarers to cross exclusively by costly flapping flight. Thus, while atmospheric convection does develop at sea and is used by some seabirds, it has been largely ignored in avian migration research. Here, we provide direct evidence for routine thermal soaring over open sea in the common crane, the heaviest facultative soarer known among terrestrial migrating birds. Using high-resolution biologging from 44 cranes tracked across their transcontinental migration over 4 years, we show that soaring performance was no different over sea than over land in mid-latitudes. Sea-soaring occurred predominantly in autumn when large water-air temperature difference followed mid-latitude cyclones. Our findings challenge a fundamental migration research paradigm and suggest that obligate soarers avoid sea-crossing not due to the absence or weakness of thermals but due to their low frequency, for which they cannot compensate with prolonged flapping. Conversely, facultative soarers other than cranes should also be able to use thermals over the sea. Marine cold air outbreaks, imperative to global energy budget and climate, may also be important for bird migration.


Assuntos
Aves , Voo Animal , Animais , Clima
2.
BMC Med Educ ; 22(1): 632, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987608

RESUMO

BACKGROUND: An understanding of epidemiological dynamics, once confined to mathematical epidemiologists and applied mathematicians, can be disseminated to a non-mathematical community of health care professionals and applied biologists through simple-to-use simulation applications. We used Numerus Model Builder RAMP Ⓡ (Runtime Alterable Model Platform) technology, to construct deterministic and stochastic versions of compartmental SIR (Susceptible, Infectious, Recovered with immunity) models as simple-to-use, freely available, epidemic simulation application programs. RESULTS: We take the reader through simulations used to demonstrate the following concepts: 1) disease prevalence curves of unmitigated outbreaks have a single peak and result in epidemics that 'burn' through the population to become extinguished when the proportion of the susceptible population drops below a critical level; 2) if immunity in recovered individuals wanes sufficiently fast then the disease persists indefinitely as an endemic state, with possible dampening oscillations following the initial outbreak phase; 3) the steepness and initial peak of the prevalence curve are influenced by the basic reproductive value R0, which must exceed 1 for an epidemic to occur; 4) the probability that a single infectious individual in a closed population (i.e. no migration) gives rise to an epidemic increases with the value of R0>1; 5) behavior that adaptively decreases the contact rate among individuals with increasing prevalence has major effects on the prevalence curve including dramatic flattening of the prevalence curve along with the generation of multiple prevalence peaks; 6) the impacts of treatment are complicated to model because they effect multiple processes including transmission, recovery and mortality; 7) the impacts of vaccination policies, constrained by a fixed number of vaccination regimens and by the rate and timing of delivery, are crucially important to maximizing the ability of vaccination programs to reduce mortality. CONCLUSION: Our presentation makes transparent the key assumptions underlying SIR epidemic models. Our RAMP simulators are meant to augment rather than replace classroom material when teaching epidemiological dynamics. They are sufficiently versatile to be used by students to address a range of research questions for term papers and even dissertations.


Assuntos
Doenças Transmissíveis , Epidemias , Doenças Transmissíveis/epidemiologia , Simulação por Computador , Humanos , Modelos Biológicos , Processos Estocásticos
3.
Proc Biol Sci ; 288(1952): 20210582, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34074118

RESUMO

When a transmission hotspot for an environmentally persistent pathogen establishes in otherwise high-quality habitat, the disease may exert a strong impact on a host population. However, fluctuating environmental conditions lead to heterogeneity in habitat quality and animal habitat preference, which may interrupt the overlap between selected and risky habitats. We evaluated spatio-temporal patterns in anthrax mortalities in a plains zebra (Equus quagga) population in Etosha National Park, Namibia, incorporating remote-sensing and host telemetry data. A higher proportion of anthrax mortalities of herbivores was detected in open habitats than in other habitat types. Resource selection functions showed that the zebra population shifted habitat selection in response to changes in rainfall and vegetation productivity. Average to high rainfall years supported larger anthrax outbreaks, with animals congregating in preferred open habitats, while a severe drought forced animals into otherwise less preferred habitats, leading to few anthrax mortalities. Thus, the timing of anthrax outbreaks was congruent with preference for open plains habitats and a corresponding increase in pathogen exposure. Given shifts in habitat preference, the overlap in high-quality habitat and high-risk habitat is intermittent, reducing the adverse consequences for the population.


Assuntos
Antraz , Equidae , Animais , Secas , Ecossistema , Namíbia
4.
J Transl Med ; 19(1): 109, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726787

RESUMO

BACKGROUND: No versatile web app exists that allows epidemiologists and managers around the world to comprehensively analyze the impacts of COVID-19 mitigation. The http://covid-webapp.numerusinc.com/ web app presented here fills this gap. METHODS: Our web app uses a model that explicitly identifies susceptible, contact, latent, asymptomatic, symptomatic and recovered classes of individuals, and a parallel set of response classes, subject to lower pathogen-contact rates. The user inputs a CSV file of incidence and, if of interest, mortality rate data. A default set of parameters is available that can be overwritten through input or online entry, and a user-selected subset of these can be fitted to the model using maximum-likelihood estimation (MLE). Model fitting and forecasting intervals are specifiable and changes to parameters allow counterfactual and forecasting scenarios. Confidence or credible intervals can be generated using stochastic simulations, based on MLE values, or on an inputted CSV file containing Markov chain Monte Carlo (MCMC) estimates of one or more parameters. RESULTS: We illustrate the use of our web app in extracting social distancing, social relaxation, surveillance or virulence switching functions (i.e., time varying drivers) from the incidence and mortality rates of COVID-19 epidemics in Israel, South Africa, and England. The Israeli outbreak exhibits four distinct phases: initial outbreak, social distancing, social relaxation, and a second wave mitigation phase. An MCMC projection of this latter phase suggests the Israeli epidemic will continue to produce into late November an average of around 1500 new case per day, unless the population practices social-relaxation measures at least 5-fold below the level in August, which itself is 4-fold below the level at the start of July. Our analysis of the relatively late South African outbreak that became the world's fifth largest COVID-19 epidemic in July revealed that the decline through late July and early August was characterised by a social distancing driver operating at more than twice the per-capita applicable-disease-class (pc-adc) rate of the social relaxation driver. Our analysis of the relatively early English outbreak, identified a more than 2-fold improvement in surveillance over the course of the epidemic. It also identified a pc-adc social distancing rate in early August that, though nearly four times the pc-adc social relaxation rate, appeared to barely contain a second wave that would break out if social distancing was further relaxed. CONCLUSION: Our web app provides policy makers and health officers who have no epidemiological modelling or computer coding expertise with an invaluable tool for assessing the impacts of different outbreak mitigation policies and measures. This includes an ability to generate an epidemic-suppression or curve-flattening index that measures the intensity with which behavioural responses suppress or flatten the epidemic curve in the region under consideration.


Assuntos
COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Infecções , Internet , Aplicativos Móveis , COVID-19/etiologia , COVID-19/transmissão , Simulação por Computador , Modificador do Efeito Epidemiológico , Inglaterra/epidemiologia , Epidemias , Previsões/métodos , Humanos , Controle de Infecções/métodos , Controle de Infecções/organização & administração , Controle de Infecções/normas , Israel/epidemiologia , Cadeias de Markov , Distanciamento Físico , Vigilância da População/métodos , Fatores de Risco , SARS-CoV-2/genética , África do Sul/epidemiologia
5.
Mol Ecol ; 30(19): 4723-4739, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34260783

RESUMO

Human activities shape resources available to wild animals, impacting diet and probably altering their microbiota and overall health. We examined drivers shaping microbiota profiles of common cranes (Grus grus) in agricultural habitats by comparing gut microbiota and crane movement patterns (GPS-tracking) over three periods of their migratory cycle, and by analysing the effect of artificially supplemented food provided as part of a crane-agriculture management programme. We sampled faecal droppings in Russia (nonsupplemented, premigration) and in Israel in late autumn (nonsupplemented, postmigration) and winter (supplemented and nonsupplemented, wintering). As supplemented food is typically homogenous, we predicted lower microbiota diversity and different composition in birds relying on supplementary feeding. We did not observe changes in microbial diversity with food supplementation, as diversity differed only in samples from nonsupplemented wintering sites. However, both food supplementation and season affected bacterial community composition and led to increased abundance of specific genera (mostly Firmicutes). Cranes from the nonsupplemented groups spent most of their time in agricultural fields, probably feeding on residual grain when available, while food-supplemented cranes spent most of their time at the feeding station. Thus, nonsupplemented and food-supplemented diets probably diverge only in winter, when crop rotation and depletion of anthropogenic resources may lead to a more variable diet in nonsupplemented sites. Our results support the role of diet in structuring bacterial communities and show that they undergo both seasonal and human-induced shifts. Movement analyses provide important clues regarding host diet and behaviour towards understanding how human-induced changes shape the gut microbiota in wild animals.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Aves , Suplementos Nutricionais , Humanos , RNA Ribossômico 16S/genética
6.
Proc Biol Sci ; 287(1922): 20192643, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32126954

RESUMO

Concern for megafauna is increasing among scientists and non-scientists. Many studies have emphasized that megafauna play prominent ecological roles and provide important ecosystem services to humanity. But, what precisely are 'megafauna'? Here, we critically assess the concept of megafauna and propose a goal-oriented framework for megafaunal research. First, we review definitions of megafauna and analyse associated terminology in the scientific literature. Second, we conduct a survey among ecologists and palaeontologists to assess the species traits used to identify and define megafauna. Our review indicates that definitions are highly dependent on the study ecosystem and research question, and primarily rely on ad hoc size-related criteria. Our survey suggests that body size is crucial, but not necessarily sufficient, for addressing the different applications of the term megafauna. Thus, after discussing the pros and cons of existing definitions, we propose an additional approach by defining two function-oriented megafaunal concepts: 'keystone megafauna' and 'functional megafauna', with its variant 'apex megafauna'. Assessing megafauna from a functional perspective could challenge the perception that there may not be a unifying definition of megafauna that can be applied to all eco-evolutionary narratives. In addition, using functional definitions of megafauna could be especially conducive to cross-disciplinary understanding and cooperation, improvement of conservation policy and practice, and strengthening of public perception. As megafaunal research advances, we encourage scientists to unambiguously define how they use the term 'megafauna' and to present the logic underpinning their definition.


Assuntos
Conservação dos Recursos Naturais , Animais , Evolução Biológica , Tamanho Corporal , Extinção Biológica
7.
Mol Ecol ; 29(7): 1358-1371, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32115796

RESUMO

The behavioural ecology of host species is likely to affect their microbial communities, because host sex, diet, physiology, and movement behaviour could all potentially influence their microbiota. We studied a wild population of barn owls (Tyto alba) and collected data on their microbiota, movement, diet, size, coloration, and reproduction. The composition of bacterial species differed by the sex of the host and female owls had more diverse bacterial communities than their male counterparts. The abundance of two families of bacteria, Actinomycetaceae and Lactobacillaceae, also varied between the sexes, potentially as a result of sex differences in hormones and immunological function, as has previously been found with Lactobacillaceae in the microbiota of mice. Male and female owls did not differ in the prey they brought to the nest, which suggests that dietary differences are unlikely to underlie the differences in their microbiota. The movement behaviour of the owls was associated with the host microbiota in both males and females because owls that moved further from their nest each day had more diverse bacterial communities than owls that stayed closer to their nests. This novel result suggests that the movement ecology of hosts can impact their microbiota, potentially on the basis of their differential encounters with new bacterial species as the hosts move and forage across the landscape. Overall, we found that many aspects of the microbial community are correlated with the behavioural ecology of the host and that data on the microbiota can aid in generating new hypotheses about host behaviour.


Assuntos
Microbiota , Atividade Motora , Caracteres Sexuais , Estrigiformes/microbiologia , Animais , Dieta/veterinária , Feminino , Israel , Masculino , Reprodução
8.
Mol Ecol ; 29(23): 4706-4720, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33001530

RESUMO

Animals generally benefit from their gastrointestinal microbiome, but the factors that influence the composition and dynamics of their microbiota remain poorly understood. Studies of nonmodel host species can illuminate how microbiota and their hosts interact in natural environments. We investigated the role of migratory behaviour in shaping the gut microbiota of free-ranging barn swallows (Hirundo rustica) by studying co-occurring migrant and resident subspecies sampled during the autumn migration at a migratory bottleneck. We found that within-host microbial richness (α-diversity) was similar between migrant and resident microbial communities. In contrast, we found that microbial communities (ß-diversity) were significantly different between groups regarding both microbes present and their relative abundances. Compositional differences were found for 36 bacterial genera, with 27 exhibiting greater abundance in migrants and nine exhibiting greater abundance in residents. There was heightened abundance of Mycoplasma spp. and Corynebacterium spp. in migrants, a pattern shared by other studies of migratory species. Screens for key regional pathogens revealed that neither residents nor migrants carried avian influenza viruses and Newcastle disease virus, suggesting that the status of these diseases did not underlie observed differences in microbiome composition. Furthermore, the prevalence and abundance of Salmonella spp., as determined from microbiome data and cultural assays, were both low and similar across the groups. Overall, our results indicate that microbial composition differs between migratory and resident barn swallows, even when they are conspecific and sympatrically occurring. Differences in host origins (breeding sites) may result in microbial community divergence, and varied behaviours throughout the annual cycle (e.g., migration) could further differentiate compositional structure as it relates to functional needs.


Assuntos
Microbioma Gastrointestinal , Microbiota , Andorinhas , Migração Animal , Animais , Bactérias/genética
9.
Ecol Lett ; 21(4): 588-604, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29446237

RESUMO

Though epidemiology dates back to the 1700s, most mathematical representations of epidemics still use transmission rates averaged at the population scale, especially for wildlife diseases. In simplifying the contact process, we ignore the heterogeneities in host movements that complicate the real world, and overlook their impact on spatiotemporal patterns of disease burden. Movement ecology offers a set of tools that help unpack the transmission process, letting researchers more accurately model how animals within a population interact and spread pathogens. Analytical techniques from this growing field can also help expose the reverse process: how infection impacts movement behaviours, and therefore other ecological processes like feeding, reproduction, and dispersal. Here, we synthesise the contributions of movement ecology in disease research, with a particular focus on studies that have successfully used movement-based methods to quantify individual heterogeneity in exposure and transmission risk. Throughout, we highlight the rapid growth of both disease and movement ecology and comment on promising but unexplored avenues for research at their overlap. Ultimately, we suggest, including movement empowers ecologists to pose new questions, expanding our understanding of host-pathogen dynamics and improving our predictive capacity for wildlife and even human diseases.


Assuntos
Doenças dos Animais , Distribuição Animal , Surtos de Doenças , Ecologia , Doenças dos Animais/epidemiologia , Animais , Humanos , Pesquisa
10.
Ecol Lett ; 21(2): 153-166, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29280332

RESUMO

Critical evaluation of the adequacy of ecological models is urgently needed to enhance their utility in developing theory and enabling environmental managers and policymakers to make informed decisions. Poorly supported management can have detrimental, costly or irreversible impacts on the environment and society. Here, we examine common issues in ecological modelling and suggest criteria for improving modelling frameworks. An appropriate level of process description is crucial to constructing the best possible model, given the available data and understanding of ecological structures. Model details unsupported by data typically lead to over parameterisation and poor model performance. Conversely, a lack of mechanistic details may limit a model's ability to predict ecological systems' responses to management. Ecological studies that employ models should follow a set of model adequacy assessment protocols that include: asking a series of critical questions regarding state and control variable selection, the determinacy of data, and the sensitivity and validity of analyses. We also need to improve model elaboration, refinement and coarse graining procedures to better understand the relevancy and adequacy of our models and the role they play in advancing theory, improving hind and forecasting, and enabling problem solving and management.


Assuntos
Ecologia , Modelos Teóricos , Ecossistema , Previsões , Projetos de Pesquisa
11.
Nature ; 486(7401): 52-8, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22678279

RESUMO

Localized ecological systems are known to shift abruptly and irreversibly from one state to another when they are forced across critical thresholds. Here we review evidence that the global ecosystem as a whole can react in the same way and is approaching a planetary-scale critical transition as a result of human influence. The plausibility of a planetary-scale 'tipping point' highlights the need to improve biological forecasting by detecting early warning signs of critical transitions on global as well as local scales, and by detecting feedbacks that promote such transitions. It is also necessary to address root causes of how humans are forcing biological changes.


Assuntos
Mudança Climática/estatística & dados numéricos , Planeta Terra , Ecossistema , Modelos Teóricos , Animais , Monitoramento Ambiental , Previsões , Atividades Humanas , Humanos
12.
Proc Biol Sci ; 284(1852)2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28404771

RESUMO

Uncertainties regarding food location and quality are among the greatest challenges faced by foragers and communal roosting may facilitate success through social foraging. The information centre hypothesis (ICH) suggests that uninformed individuals at shared roosts benefit from following informed individuals to previously visited resources. We tested several key prerequisites of the ICH in a social obligate scavenger, the Eurasian griffon vulture (Gyps fulvus), by tracking movements and behaviour of sympatric individuals over extended periods and across relatively large spatial scales, thereby precluding alternative explanations such as local enhancement. In agreement with the ICH, we found that 'informed' individuals returning to previously visited carcasses were followed by 'uninformed' vultures that consequently got access to these resources. When a dyad (two individuals that depart from the same roost within 2 min of each other) included an informed individual, they spent a higher proportion of the flight time close to each other at a shorter distance between them than otherwise. Although all individuals occasionally profited from following others, they differed in their tendencies to be informed or uninformed. This study provides evidence for 'following behaviour' in natural conditions and demonstrates differential roles and information states among foragers within a population. Moreover, demonstrating the possible reliance of vultures on following behaviour emphasizes that individuals in declining populations may suffer from reduced foraging efficiency.


Assuntos
Falconiformes/fisiologia , Comportamento Alimentar , Comportamento Social , Animais , Feminino , Israel , Masculino
13.
J Anim Ecol ; 86(5): 1179-1191, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28609555

RESUMO

Ecologists have traditionally focused on herbivore carcasses as study models in scavenging research. However, some observations of scavengers avoiding feeding on carnivore carrion suggest that different types of carrion may lead to differential pressures. Untested assumptions about carrion produced at different trophic levels could therefore lead ecologists to overlook important evolutionary processes and their ecological consequences. Our general goal was to investigate the use of mammalian carnivore carrion by vertebrate scavengers. In particular, we aimed to test the hypothesis that carnivore carcasses are avoided by other carnivores, especially at the intraspecific level, most likely to reduce exposure to parasitism. We take a three-pronged approach to study this principle by: (i) providing data from field experiments, (ii) carrying out evolutionary simulations of carnivore scavenging strategies under risks of parasitic infection, and (iii) conducting a literature-review to test two predictions regarding parasite life-history strategies. First, our field experiments showed that the mean number of species observed feeding at carcasses and the percentage of consumed carrion biomass were substantially higher at herbivore carcasses than at carnivore carcasses. This occurred even though the number of scavenger species visiting carcasses and the time needed by scavengers to detect carcasses were similar between both types of carcasses. In addition, we did not observe cannibalism. Second, our evolutionary simulations demonstrated that a risk of parasite transmission leads to the evolution of scavengers with generally low cannibalistic tendencies, and that the emergence of cannibalism-avoidance behaviour depends strongly on assumptions about parasite-based mortality rates. Third, our literature review indicated that parasite species potentially able to follow a carnivore-carnivore indirect cycle, as well as those transmitted via meat consumption, are rare in our study system. Our findings support the existence of a novel coevolutionary relation between carnivores and their parasites, and suggest that carnivore and herbivore carcasses play very different roles in food webs and ecosystems.


Assuntos
Carnivoridade , Comportamento Alimentar , Mamíferos , Parasitos , Animais , Ecologia , Ecossistema , Cadeia Alimentar , Vertebrados
14.
ISPRS J Photogramm Remote Sens ; 131: 77-91, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30739997

RESUMO

African savanna vegetation is subject to extensive degradation as a result of rapid climate and land use change. To better understand these changes detailed assessment of vegetation structure is needed across an extensive spatial scale and at a fine temporal resolution. Applying remote sensing techniques to savanna vegetation is challenging due to sparse cover, high background soil signal, and difficulty to differentiate between spectral signals of bare soil and dry vegetation. In this paper, we attempt to resolve these challenges by analyzing time series of four MODIS Vegetation Products (VPs): Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Leaf Area Index (LAI), and Fraction of Photosynthetically Active Radiation (FPAR) for Etosha National Park, a semiarid savanna in north-central Namibia. We create models to predict the density, cover, and biomass of the main savanna vegetation forms: grass, shrubs, and trees. To calibrate remote sensing data we developed an extensive and relatively rapid field methodology and measured herbaceous and woody vegetation during both the dry and wet seasons. We compared the efficacy of the four MODIS-derived VPs in predicting vegetation field measured variables. We then compared the optimal time span of VP time series to predict ground-measured vegetation. We found that Multiyear Partial Least Square Regression (PLSR) models were superior to single year or single date models. Our results show that NDVI-based PLSR models yield robust prediction of tree density (R2 =0.79, relative Root Mean Square Error, rRMSE=1.9%) and tree cover (R2 =0.78, rRMSE=0.3%). EVI provided the best model for shrub density (R2 =0.82) and shrub cover (R2 =0.83), but was only marginally superior over models based on other VPs. FPAR was the best predictor of vegetation biomass of trees (R2 =0.76), shrubs (R2 =0.83), and grass (R2 =0.91). Finally, we addressed an enduring challenge in the remote sensing of semiarid vegetation by examining the transferability of predictive models through space and time. Our results show that models created in the wetter part of Etosha could accurately predict trees' and shrubs' variables in the drier part of the reserve and vice versa. Moreover, our results demonstrate that models created for vegetation variables in the dry season of 2011 could be successfully applied to predict vegetation in the wet season of 2012. We conclude that extensive field data combined with multiyear time series of MODIS vegetation products can produce robust predictive models for multiple vegetation forms in the African savanna. These methods advance the monitoring of savanna vegetation dynamics and contribute to improved management and conservation of these valuable ecosystems.

15.
BMC Evol Biol ; 16: 50, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26922946

RESUMO

BACKGROUND: Darwin and the architects of the Modern Synthesis found sympatric speciation difficult to explain and suggested it is unlikely to occur. Increasingly, evidence over the past few decades suggest that sympatric speciation can occur under ecological conditions that require at most intraspecific competition for a structured resource. Here we used an individual-based population model with variable foraging strategies to study the evolution of mating behavior among foraging strategy types. Initially, individuals were placed at random on a structureless resource landscape, with subsequent spatial variation induced through foraging activity itself. The fitness of individuals was determined by their biomass at the end of each generational cycle. The model incorporates three diallelic, codominant foraging strategy genes, and one mate-choice or m-trait (i.e. incipient magic trait) gene, where the latter is inactive when random mating is assumed. RESULTS: Under non-random mating, the m-trait gene promotes increasing levels of either disassortative or assortative mating when the frequency of m respectively increases or decreases from 0.5. Our evolutionary simulations demonstrate that, under initial random mating conditions, an activated m-trait gene evolves to promote assortative mating because the system, in trying to fit a multipeak adaptive landscape, causes heterozygous individuals to be less fit than homozygous individuals. CONCLUSION: Our results extend our theoretical understanding that sympatric speciation can evolve under nicheless or gradientless resource conditions: i.e. the underlying resource is monomorphic and initially spatially homogeneous. Further the simplicity and generality of our model suggests that sympatric speciation may be more likely than previously thought to occur in mobile, sexually-reproducing organisms.


Assuntos
Comportamento Animal , Especiação Genética , Modelos Teóricos , Simpatria , Animais , Ecologia , Meio Ambiente , Comportamento Alimentar , Fenótipo , Reprodução/genética , Seleção Genética , Comportamento Sexual Animal
16.
Lancet ; 381(9877): 1561-9, 2013 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-23391466

RESUMO

BACKGROUND: The proportion of heterosexual HIV transmission in sub-Saharan Africa that occurs within cohabiting partnerships, compared with that in single people or extra-couple relationships, is widely debated. We estimated the proportional contribution of different routes of transmission to new HIV infections. As plans to use antiretroviral drugs as a strategy for population-level prevention progress, understanding the importance of different transmission routes is crucial to target intervention efforts. METHODS: We built a mechanistic model of HIV transmission with data from Demographic and Health Surveys (DHS) for 2003-2011, of 27,201 cohabiting couples (men aged 15-59 years and women aged 15-49 years) from 18 sub-Saharan African countries with information about relationship duration, age at sexual debut, and HIV serostatus. We combined this model with estimates of HIV survival times and country-specific estimates of HIV prevalence and coverage of antiretroviral therapy (ART). We then estimated the proportion of recorded infections in surveyed cohabiting couples that occurred before couple formation, between couple members, and because of extra-couple intercourse. FINDINGS: In surveyed couples, we estimated that extra-couple transmission accounted for 27-61% of all HIV infections in men and 21-51% of all those in women, with ranges showing intercountry variation. We estimated that in 2011, extra-couple transmission accounted for 32-65% of new incident HIV infections in men in cohabiting couples, and 10-47% of new infections in women in such couples. Our findings suggest that transmission within couples occurs largely from men to women; however, the latter sex have a very high-risk period before couple formation. INTERPRETATION: Because of the large contribution of extra-couple transmission to new HIV infections, interventions for HIV prevention should target the general sexually active population and not only serodiscordant couples. FUNDING: US National Institutes of Health, US National Science Foundation, and J S McDonnell Foundation.


Assuntos
Infecções por HIV/epidemiologia , Infecções por HIV/transmissão , Adolescente , Adulto , África Subsaariana/epidemiologia , Características da Família , Feminino , Soropositividade para HIV/epidemiologia , Soropositividade para HIV/transmissão , Inquéritos Epidemiológicos , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Adulto Jovem
17.
Proc Biol Sci ; 281(1783): 20140077, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24718761

RESUMO

Pathogen evasion of the host immune system is a key force driving extreme polymorphism in genes of the major histocompatibility complex (MHC). Although this gene family is well characterized in structure and function, there is still much debate surrounding the mechanisms by which MHC diversity is selectively maintained. Many studies have investigated relationships between MHC variation and specific pathogens, and have found mixed support for and against the hypotheses of heterozygote advantage, frequency-dependent or fluctuating selection. Few, however, have focused on the selective effects of multiple parasite types on host immunogenetic patterns. Here, we examined relationships between variation in the equine MHC gene, ELA-DRA, and both gastrointestinal (GI) and ectoparasitism in plains zebras (Equus quagga). Specific alleles present at opposing population frequencies had antagonistic effects, with rare alleles associated with increased GI parasitism and common alleles with increased tick burdens. These results support a frequency-dependent mechanism, but are also consistent with fluctuating selection. Maladaptive GI parasite 'susceptibility alleles' were reduced in frequency, suggesting that these parasites may play a greater selective role at this locus. Heterozygote advantage, in terms of allele mutational divergence, also predicted decreased GI parasite burden in genotypes with a common allele. We conclude that an immunogenetic trade-off affects resistance/susceptibility to parasites in this system. Because GI and ectoparasites do not directly interact within hosts, our results uniquely show that antagonistic parasite interactions can be indirectly modulated through the host immune system. This study highlights the importance of investigating the role of multiple parasites in shaping patterns of host immunogenetic variation.


Assuntos
Equidae , Enteropatias Parasitárias/veterinária , Infecções por Strongylida/veterinária , Infestações por Carrapato/veterinária , Animais , Equidae/genética , Equidae/imunologia , Equidae/parasitologia , Feminino , Frequência do Gene , Heterozigoto , Enteropatias Parasitárias/epidemiologia , Enteropatias Parasitárias/imunologia , Enteropatias Parasitárias/parasitologia , Complexo Principal de Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade/imunologia , Masculino , Namíbia/epidemiologia , Estações do Ano , Estrongilídios/isolamento & purificação , Infecções por Strongylida/epidemiologia , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/imunologia , Infestações por Carrapato/parasitologia , Carrapatos/fisiologia
18.
Proc Biol Sci ; 281(1795)2014 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-25274365

RESUMO

Parasites can shape the foraging behaviour of their hosts through cues indicating risk of infection. When cues for risk co-occur with desired traits such as forage quality, individuals face a trade-off between nutrient acquisition and parasite exposure. We evaluated how this trade-off may influence disease transmission in a 3-year experimental study of anthrax in a guild of mammalian herbivores in Etosha National Park, Namibia. At plains zebra (Equus quagga) carcass sites we assessed (i) carcass nutrient effects on soils and grasses, (ii) concentrations of Bacillus anthracis (BA) on grasses and in soils, and (iii) herbivore grazing behaviour, compared with control sites, using motion-sensing camera traps. We found that carcass-mediated nutrient pulses improved soil and vegetation, and that BA is found on grasses up to 2 years after death. Host foraging responses to carcass sites shifted from avoidance to attraction, and ultimately to no preference, with the strength and duration of these behavioural responses varying among herbivore species. Our results demonstrate that animal carcasses alter the environment and attract grazing hosts to parasite aggregations. This attraction may enhance transmission rates, suggesting that hosts are limited in their ability to trade off nutrient intake with parasite avoidance when relying on indirect cues.


Assuntos
Antraz/veterinária , Bacillus anthracis/fisiologia , Equidae , Comportamento Alimentar , Poaceae/química , Solo/química , Animais , Antraz/microbiologia , Antraz/transmissão , Bacillus anthracis/isolamento & purificação , Cadáver , Equidae/fisiologia , Estudos Longitudinais , Namíbia , Especificidade da Espécie
19.
J Anim Ecol ; 83(5): 1078-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24499424

RESUMO

Few studies have examined host-pathogen interactions in wildlife from an immunological perspective, particularly in the context of seasonal and longitudinal dynamics. In addition, though most ecological immunology studies employ serological antibody assays, endpoint titre determination is usually based on subjective criteria and needs to be made more objective. Despite the fact that anthrax is an ancient and emerging zoonotic infectious disease found world-wide, its natural ecology is not well understood. In particular, little is known about the adaptive immune responses of wild herbivore hosts against Bacillus anthracis. Working in the natural anthrax system of Etosha National Park, Namibia, we collected 154 serum samples from plains zebra (Equus quagga), 21 from springbok (Antidorcas marsupialis) and 45 from African elephants (Loxodonta africana) over 2-3 years, resampling individuals when possible for seasonal and longitudinal comparisons. We used enzyme-linked immunosorbent assays to measure anti-anthrax antibody titres and developed three increasingly conservative models to determine endpoint titres with more rigourous, objective mensuration. Between 52 and 87% of zebra, 0-15% of springbok and 3-52% of elephants had measurable anti-anthrax antibody titres, depending on the model used. While the ability of elephants and springbok to mount anti-anthrax adaptive immune responses is still equivocal, our results indicate that zebra in ENP often survive sublethal anthrax infections, encounter most B. anthracis in the wet season and can partially booster their immunity to B. anthracis. Thus, rather than being solely a lethal disease, anthrax often occurs as a sublethal infection in some susceptible hosts. Though we found that adaptive immunity to anthrax wanes rapidly, subsequent and frequent sublethal B. anthracis infections cause maturation of anti-anthrax immunity. By triggering host immune responses, these common sublethal infections may act as immunomodulators and affect population dynamics through indirect immunological and co-infection effects. In addition, with our three endpoint titre models, we introduce more mensuration rigour into serological antibody assays, even under the often-restrictive conditions that come with adapting laboratory immunology methods to wild systems. With these methods, we identified significantly more zebras responding immunologically to anthrax than have previous studies using less comprehensive titre analyses.


Assuntos
Antílopes/imunologia , Antílopes/microbiologia , Antraz/imunologia , Antraz/veterinária , Elefantes/imunologia , Elefantes/microbiologia , Equidae/imunologia , Equidae/microbiologia , Interações Hospedeiro-Patógeno , Estações do Ano , Imunidade Adaptativa , Animais , Anticorpos Antibacterianos/sangue , Namíbia/epidemiologia
20.
BMC Ecol ; 14: 27, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25388877

RESUMO

BACKGROUND: Most vertebrates experience coinfections, and many pathogen-pathogen interactions occur indirectly through the host immune system. These interactions are particularly strong in mixed micro-macroparasite infections because of immunomodulatory effects of helminth parasites. While these trade-offs have been examined extensively in laboratory animals, few studies have examined them in natural systems. Additionally, many wildlife pathogens fluctuate seasonally, at least partly due to seasonal host immune changes. We therefore examined seasonality of immune resource allocation, pathogen abundance and exposure, and interactions between infections and immunity in plains zebra (Equus quagga) in Etosha National Park (ENP), Namibia, a system with strongly seasonal patterns of gastrointestinal (GI) helminth infection intensity and concurrent anthrax outbreaks. Both pathogens are environmentally transmitted, and helminth seasonality is driven by environmental pressures on free living life stages. The reasons behind anthrax seasonality are currently not understood, though anthrax is less likely directly driven by environmental factors. RESULTS: We measured a complex, interacting set of variables and found evidence that GI helminth infection intensities, eosinophil counts, IgE and IgGb antibody titers, and possibly IL-4 cytokine signaling were increased in wetter seasons, and that ectoparasite infestations and possibly IFN-γ cytokine signaling were increased in drier seasons. Monocyte counts and anti-anthrax antibody titers were negatively associated with wet season eosinophilia, and monocytes were negatively correlated with IgGb and IgE titers. Taken together, this supports the hypothesis that ENP wet seasons are characterized by immune resource allocation toward Th-2 type responses, while Th1-type immunity may prevail in drier seasons, and that hosts may experience Th1-Th2 trade-offs. We found evidence that this Th2-type resource allocation is likely driven by GI parasite infections, and that these trade-offs may render hosts less capable of concurrently mounting effective Th1-type immune responses against anthrax. CONCLUSIONS: This study is one of the first to examine laboratory-demonstrated Th1-Th2 trade-offs in a natural system. It provides evidence that seasonally bound pathogens may affect, through immunology, transmission dynamics of pathogens that might otherwise not be seasonally distributed. It suggests that, by manipulating the internal host ecosystem, GI parasites may influence the external ecosystem by affecting the dynamics of another environmentally transmitted pathogen.


Assuntos
Antraz/veterinária , Coinfecção/veterinária , Equidae , Enteropatias Parasitárias/veterinária , Estações do Ano , Infestações por Carrapato/veterinária , Animais , Antraz/epidemiologia , Antraz/imunologia , Antraz/microbiologia , Bacillus anthracis/isolamento & purificação , Coinfecção/epidemiologia , Coinfecção/microbiologia , Coinfecção/parasitologia , Helmintíase/epidemiologia , Helmintíase/imunologia , Helmintíase/parasitologia , Helmintos/isolamento & purificação , Helmintos/fisiologia , Imunidade Inata , Enteropatias Parasitárias/epidemiologia , Enteropatias Parasitárias/imunologia , Enteropatias Parasitárias/parasitologia , Estudos Longitudinais , Namíbia/epidemiologia , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/imunologia , Infestações por Carrapato/parasitologia , Carrapatos/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa