Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nature ; 626(8001): 1094-1101, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38383783

RESUMO

Persistent SARS-CoV-2 infections may act as viral reservoirs that could seed future outbreaks1-5, give rise to highly divergent lineages6-8 and contribute to cases with post-acute COVID-19 sequelae (long COVID)9,10. However, the population prevalence of persistent infections, their viral load kinetics and evolutionary dynamics over the course of infections remain largely unknown. Here, using viral sequence data collected as part of a national infection survey, we identified 381 individuals with SARS-CoV-2 RNA at high titre persisting for at least 30 days, of which 54 had viral RNA persisting at least 60 days. We refer to these as 'persistent infections' as available evidence suggests that they represent ongoing viral replication, although the persistence of non-replicating RNA cannot be ruled out in all. Individuals with persistent infection had more than 50% higher odds of self-reporting long COVID than individuals with non-persistent infection. We estimate that 0.1-0.5% of infections may become persistent with typically rebounding high viral loads and last for at least 60 days. In some individuals, we identified many viral amino acid substitutions, indicating periods of strong positive selection, whereas others had no consensus change in the sequences for prolonged periods, consistent with weak selection. Substitutions included mutations that are lineage defining for SARS-CoV-2 variants, at target sites for monoclonal antibodies and/or are commonly found in immunocompromised people11-14. This work has profound implications for understanding and characterizing SARS-CoV-2 infection, epidemiology and evolution.


Assuntos
COVID-19 , Inquéritos Epidemiológicos , Infecção Persistente , SARS-CoV-2 , Humanos , Substituição de Aminoácidos , Anticorpos Monoclonais/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Evolução Molecular , Hospedeiro Imunocomprometido/imunologia , Mutação , Infecção Persistente/epidemiologia , Infecção Persistente/virologia , Síndrome de COVID-19 Pós-Aguda/epidemiologia , Síndrome de COVID-19 Pós-Aguda/virologia , Prevalência , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/química , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Seleção Genética , Autorrelato , Fatores de Tempo , Carga Viral , Replicação Viral
2.
PLoS Pathog ; 20(1): e1011911, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38206964

RESUMO

The discrepancy between short- and long-term rate estimates, known as the time-dependent rate phenomenon (TDRP), poses a challenge to extrapolating evolutionary rates over time and reconstructing evolutionary history of viruses. The TDRP reveals a decline in evolutionary rate estimates with the measurement timescale, explained empirically by a power-law rate decay, notably observed in animal and human viruses. A mechanistic evolutionary model, the Prisoner of War (PoW) model, has been proposed to address TDRP in viruses. Although TDRP has been studied in animal viruses, its impact on plant virus evolutionary history remains largely unexplored. Here, we investigated the consequences of TDRP in plant viruses by applying the PoW model to reconstruct the evolutionary history of sobemoviruses, plant pathogens with significant importance due to their impact on agriculture and plant health. Our analysis showed that the Sobemovirus genus dates back over four million years, indicating an ancient origin. We found evidence that supports deep host jumps to Poaceae, Fabaceae, and Solanaceae occurring between tens to hundreds of thousand years ago, followed by specialization. Remarkably, the TDRP-corrected evolutionary history of sobemoviruses was extended far beyond previous estimates that had suggested their emergence nearly 9,000 years ago, a time coinciding with the Neolithic period in the Near East. By incorporating sequences collected through metagenomic analyses, the resulting phylogenetic tree showcases increased genetic diversity, reflecting a deep history of sobemovirus species. We identified major radiation events beginning between 4,600 to 2,000 years ago, which aligns with the Neolithic period in various regions, suggesting a period of rapid diversification from then to the present. Our findings make a case for the possibility of deep evolutionary origins of plant viruses.


Assuntos
Vírus de Plantas , Vírus de RNA , Animais , Humanos , Filogenia , Evolução Biológica , Vírus de RNA/genética , Vírus de Plantas/genética , Plantas , Evolução Molecular
3.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35038728

RESUMO

High-throughput sequencing enables rapid genome sequencing during infectious disease outbreaks and provides an opportunity to quantify the evolutionary dynamics of pathogens in near real-time. One difficulty of undertaking evolutionary analyses over short timescales is the dependency of the inferred evolutionary parameters on the timespan of observation. Crucially, there are an increasing number of molecular clock analyses using external evolutionary rate priors to infer evolutionary parameters. However, it is not clear which rate prior is appropriate for a given time window of observation due to the time-dependent nature of evolutionary rate estimates. Here, we characterize the molecular evolutionary dynamics of SARS-CoV-2 and 2009 pandemic H1N1 (pH1N1) influenza during the first 12 months of their respective pandemics. We use Bayesian phylogenetic methods to estimate the dates of emergence, evolutionary rates, and growth rates of SARS-CoV-2 and pH1N1 over time and investigate how varying sampling window and data set sizes affect the accuracy of parameter estimation. We further use a generalized McDonald-Kreitman test to estimate the number of segregating nonneutral sites over time. We find that the inferred evolutionary parameters for both pandemics are time dependent, and that the inferred rates of SARS-CoV-2 and pH1N1 decline by ∼50% and ∼100%, respectively, over the course of 1 year. After at least 4 months since the start of sequence sampling, inferred growth rates and emergence dates remain relatively stable and can be inferred reliably using a logistic growth coalescent model. We show that the time dependency of the mean substitution rate is due to elevated substitution rates at terminal branches which are 2-4 times higher than those of internal branches for both viruses. The elevated rate at terminal branches is strongly correlated with an increasing number of segregating nonneutral sites, demonstrating the role of purifying selection in generating the time dependency of evolutionary parameters during pandemics.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Teorema de Bayes , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/epidemiologia , Filogenia , SARS-CoV-2
4.
BMC Med ; 21(1): 429, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953291

RESUMO

BACKGROUND: Vaccination has played a pivotal role in reducing the burden of COVID-19. Despite numerous studies highlighting its benefits in reducing the risk of severe disease and death, we still lack a quantitative understanding of how varying vaccination roll-out rates influence COVID-19 mortality. METHODS: We developed a framework for estimating the number of avertable COVID-19 deaths (ACDs) by vaccination in Iran. To achieve this, we compared Iran's vaccination roll-out rates with those of eight model countries that predominantly used inactivated virus vaccines. We calculated net differences in the number of fully vaccinated individuals under counterfactual scenarios where Iran's per-capita roll-out rate was replaced with that of the model countries. This, in turn, enabled us to determine age specific ACDs for the Iranian population under counterfactual scenarios where number of COVID-19 deaths are estimated using all-cause mortality data. These estimates covered the period from the start of 2020 to 20 April 2022. RESULTS: We found that while Iran would have had an approximately similar number of fully vaccinated individuals under counterfactual roll-out rates based on Bangladesh, Nepal, Sri Lanka, and Turkey (~ 65-70%), adopting Turkey's roll-out rates could have averted 50,000 (95% confidence interval: 38,100-53,500) additional deaths, while following Bangladesh's rates may have resulted in 52,800 (17,400-189,500) more fatalities in Iran. Surprisingly, mimicking Argentina's slower roll-out led to only 12,600 (10,400-13,300) fewer deaths, despite a higher counterfactual percentage of fully vaccinated individuals (~ 79%). Emulating Montenegro or Bolivia, with faster per capita roll-out rates and approximately 50% counterfactual full vaccination, could have prevented more deaths in older age groups, especially during the early waves. Finally, replicating Bahrain's model as an upper-bound benchmark, Iran could have averted 75,300 (56,000-83,000) deaths, primarily in the > 50 age groups. CONCLUSIONS: Our analysis revealed that faster roll-outs were consistently associated with higher numbers of averted deaths, even in scenarios with lower overall coverage. This study offers valuable insights into future decision-making regarding infectious disease epidemic management through vaccination strategies. It accomplishes this by comparing various countries' relative performance in terms of timing, pace, and vaccination coverage, ultimately contributing to the prevention of COVID-19-related deaths.


Assuntos
COVID-19 , Morte Perinatal , Vacinas , Feminino , Humanos , Idoso , COVID-19/epidemiologia , COVID-19/prevenção & controle , Irã (Geográfico)/epidemiologia , Vacinação , Cobertura Vacinal
5.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210304, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35965459

RESUMO

The SARS-CoV-2 epidemic has been extended by the evolution of more transmissible viral variants. In autumn 2020, the B.1.177 lineage became the dominant variant in England, before being replaced by the B.1.1.7 (Alpha) lineage in late 2020, with the sweep occurring at different times in each region. This period coincided with a large number of non-pharmaceutical interventions (e.g. lockdowns) to control the epidemic, making it difficult to estimate the relative transmissibility of variants. In this paper, we model the spatial spread of these variants in England using a meta-population agent-based model which correctly characterizes the regional variation in cases and distribution of variants. As a test of robustness, we additionally estimated the relative transmissibility of multiple variants using a statistical model based on the renewal equation, which simultaneously estimates the effective reproduction number R. Relative to earlier variants, the transmissibility of B.1.177 is estimated to have increased by 1.14 (1.12-1.16) and that of Alpha by 1.71 (1.65-1.77). The vaccination programme starting in December 2020 is also modelled. Counterfactual simulations demonstrate that the vaccination programme was essential for reopening in March 2021, and that if the January lockdown had started one month earlier, up to 30 k (24 k-38 k) deaths could have been prevented. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Humanos , SARS-CoV-2/genética , Estações do Ano
6.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32295920

RESUMO

The transmission bottleneck is defined as the number of viral particles that transmit from one host to establish an infection in another. Genome sequence data have been used to evaluate the size of the transmission bottleneck between humans infected with the influenza virus; however, the methods used to make these estimates have some limitations. Specifically, viral allele frequencies, which form the basis of many calculations, may not fully capture a process which involves the transmission of entire viral genomes. Here, we set out a novel approach for inferring viral transmission bottlenecks; our method combines an algorithm for haplotype reconstruction with maximum likelihood methods for bottleneck inference. This approach allows for rapid calculation and performs well when applied to data from simulated transmission events; errors in the haplotype reconstruction step did not adversely affect inferences of the population bottleneck. Applied to data from a previous household transmission study of influenza A infection, we confirm the result that the majority of transmission events involve a small number of viruses, albeit with slightly looser bottlenecks being inferred, with between 1 and 13 particles transmitted in the majority of cases. While influenza A transmission involves a tight population bottleneck, the bottleneck is not so tight as to universally prevent the transmission of within-host viral diversity.IMPORTANCE Viral populations undergo a repeated cycle of within-host growth followed by transmission. Viral evolution is affected by each stage of this cycle. The number of viral particles transmitted from one host to another, known as the transmission bottleneck, is an important factor in determining how the evolutionary dynamics of the population play out, restricting the extent to which the evolved diversity of the population can be passed from one host to another. Previous study of viral sequence data has suggested that the transmission bottleneck size for influenza A transmission between human hosts is small. Reevaluating these data using a novel and improved method, we largely confirm this result, albeit that we infer a slightly higher bottleneck size in some cases, of between 1 and 13 virions. While a tight bottleneck operates in human influenza transmission, it is not extreme in nature; some diversity can be meaningfully retained between hosts.


Assuntos
Vírus da Influenza A/genética , Influenza Humana/transmissão , Análise de Sequência de DNA/métodos , Evolução Molecular , Variação Genética/genética , Genoma Viral/genética , Haplótipos/genética , Humanos , Vírus da Influenza A/metabolismo , Influenza Humana/genética , Modelos Teóricos , Vírus/genética
7.
Euro Surveill ; 25(50)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33334398

RESUMO

BackgroundReverse-transcription PCR (RT-PCR) assays are used to test for infection with the SARS-CoV-2 virus. RT-PCR tests are highly specific and the probability of false positives is low, but false negatives are possible depending on swab type and time since symptom onset.AimTo determine how the probability of obtaining a false-negative test in infected patients is affected by time since symptom onset and swab type.MethodsWe used generalised additive mixed models to analyse publicly available data from patients who received multiple RT-PCR tests and were identified as SARS-CoV-2 positive at least once.ResultsThe probability of a positive test decreased with time since symptom onset, with oropharyngeal (OP) samples less likely to yield a positive result than nasopharyngeal (NP) samples. The probability of incorrectly identifying an uninfected individual due to a false-negative test was considerably reduced if negative tests were repeated 24 hours later. For a small false-positive test probability (<0.5%), the true number of infected individuals was larger than the number of positive tests. For a higher false-positive test probability, the true number of infected individuals was smaller than the number of positive tests.ConclusionNP samples are more sensitive than OP samples. The later an infected individual is tested after symptom onset, the less likely they are to test positive. This has implications for identifying infected patients, contact tracing and discharging convalescing patients who are potentially still infectious.


Assuntos
Teste de Ácido Nucleico para COVID-19 , COVID-19/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/isolamento & purificação , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/métodos , Reações Falso-Negativas , Humanos , Nasofaringe/virologia , Orofaringe/virologia , Probabilidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo
8.
Theor Popul Biol ; 129: 54-67, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31054850

RESUMO

For a population to acquire a complex adaptation requiring multiple individually neutral mutations, it must cross a plateau in the fitness landscape. We consider plateaus involving three mutations, and show that large populations can cross them rapidly via lineages that acquire multiple mutations while remaining at low frequency, much faster than the ∝µ3 rate for simultaneous triple mutations. Plateau-crossing is fastest for very large populations. At intermediate population sizes, recombination can greatly accelerate adaptation by combining independent mutant lineages to form triple-mutants. For more frequent recombination, such that the population is kept near linkage equilibrium, we extend our analysis to find simple expressions for the expected time to cross plateaus of arbitrary width.


Assuntos
Aptidão Genética , Mutação em Linhagem Germinativa , Humanos , Modelos Estatísticos , Fatores de Tempo
9.
Phys Biol ; 14(5): 055004, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28825411

RESUMO

We re-examined data from the classic Luria-Delbrück fluctuation experiment, which is often credited with establishing a Darwinian basis for evolution. We argue that, for the Lamarckian model of evolution to be ruled out by the experiment, the experiment must favor pure Darwinian evolution over both the Lamarckian model and a model that allows both Darwinian and Lamarckian mechanisms (as would happen for bacteria with CRISPR-Cas immunity). Analysis of the combined model was not performed in the original 1943 paper. The Luria-Delbrück paper also did not consider the possibility of neither model fitting the experiment. Using Bayesian model selection, we find that the Luria-Delbrück experiment, indeed, favors the Darwinian evolution over purely Lamarckian. However, our analysis does not rule out the combined model, and hence cannot rule out Lamarckian contributions to the evolutionary dynamics.


Assuntos
Evolução Biológica , Escherichia coli/genética , Modelos Genéticos , Teorema de Bayes , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/virologia , Fagos T/genética , Fagos T/fisiologia
10.
Phys Chem Chem Phys ; 19(36): 25168-25179, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28884763

RESUMO

We study the impact of topology on the response of a transcriptional cascade with certain circuit topologies to a constant and time-varying input signal. We systematically analyze the response of the output to activating and repressing cascades. We identify two types of responses for a linear cascade, namely the "Decaying mode", where the input signal becomes exceedingly weaker as it propagates, and the "Bistable mode", where the input signal can either be amplified or die out in the pathway. We examine how the transition occurs from one mode to the other as we add coherent and/or incoherent feed-forward loops in an otherwise linear cascade. We find that pathways with at least one incoherent feedforward loop can perform adaptive responses with the quality of response varying among different topologies. Furthermore, we study the origin of a (non)monotonic input-output profile for various circuit topologies over a wide range of parameter space. For a time-varying input signal, we identify some circuit topologies that are more prone to noise propagation than others that are more reliable in blocking out high-amplitude fluctuations. We discuss the effect of cell to cell variation in protein expression on the output of a linear cascade and compare the robustness of activating and repressing cascades to noise propagations. In the end, we apply our model to study an example of a transcription cascade that guides the development of Bacillus subtilis spores and discuss an example from a metabolic pathway where a transition from the decaying to bistable mode can occur by changing the topology of interactions in the pathway.

11.
Nat Rev Microbiol ; 21(6): 361-379, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37020110

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of deaths and substantial morbidity worldwide. Intense scientific effort to understand the biology of SARS-CoV-2 has resulted in daunting numbers of genomic sequences. We witnessed evolutionary events that could mostly be inferred indirectly before, such as the emergence of variants with distinct phenotypes, for example transmissibility, severity and immune evasion. This Review explores the mechanisms that generate genetic variation in SARS-CoV-2, underlying the within-host and population-level processes that underpin these events. We examine the selective forces that likely drove the evolution of higher transmissibility and, in some cases, higher severity during the first year of the pandemic and the role of antigenic evolution during the second and third years, together with the implications of immune escape and reinfections, and the increasing evidence for and potential relevance of recombination. In order to understand how major lineages, such as variants of concern (VOCs), are generated, we contrast the evidence for the chronic infection model underlying the emergence of VOCs with the possibility of an animal reservoir playing a role in SARS-CoV-2 evolution, and conclude that the former is more likely. We evaluate uncertainties and outline scenarios for the possible future evolutionary trajectories of SARS-CoV-2.


Assuntos
COVID-19 , Animais , COVID-19/epidemiologia , SARS-CoV-2/genética , Genômica , Evasão da Resposta Imune , Pandemias
12.
bioRxiv ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37502985

RESUMO

The emergence of SARS-CoV in 2002 and SARS-CoV-2 in 2019 has led to increased sampling of related sarbecoviruses circulating primarily in horseshoe bats. These viruses undergo frequent recombination and exhibit spatial structuring across Asia. Employing recombination-aware phylogenetic inference on bat sarbecoviruses, we find that the closest-inferred bat virus ancestors of SARS-CoV and SARS-CoV-2 existed just ~1-3 years prior to their emergence in humans. Phylogeographic analyses examining the movement of related sarbecoviruses demonstrate that they traveled at similar rates to their horseshoe bat hosts and have been circulating for thousands of years in Asia. The closest-inferred bat virus ancestor of SARS-CoV likely circulated in western China, and that of SARS-CoV-2 likely circulated in a region comprising southwest China and northern Laos, both a substantial distance from where they emerged. This distance and recency indicate that the direct ancestors of SARS-CoV and SARS-CoV-2 could not have reached their respective sites of emergence via the bat reservoir alone. Our recombination-aware dating and phylogeographic analyses reveal a more accurate inference of evolutionary history than performing only whole-genome or single gene analyses. These results can guide future sampling efforts and demonstrate that viral genomic fragments extremely closely related to SARS-CoV and SARS-CoV-2 were circulating in horseshoe bats, confirming their importance as the reservoir species for SARS viruses.

13.
Influenza Other Respir Viruses ; 17(9): e13198, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37744993

RESUMO

Background: In Angola, COVID-19 cases have been reported in all provinces, resulting in >105,000 cases and >1900 deaths. However, no detailed genomic surveillance into the introduction and spread of the SARS-CoV-2 virus has been conducted in Angola. We aimed to investigate the emergence and epidemic progression during the peak of the COVID-19 pandemic in Angola. Methods: We generated 1210 whole-genome SARS-CoV-2 sequences, contributing West African data to the global context, that were phylogenetically compared against global strains. Virus movement events were inferred using ancestral state reconstruction. Results: The epidemic in Angola was marked by four distinct waves of infection, dominated by 12 virus lineages, including VOCs, VOIs, and the VUM C.16, which was unique to South-Western Africa and circulated for an extended period within the region. Virus exchanges occurred between Angola and its neighboring countries, and strong links with Brazil and Portugal reflected the historical and cultural ties shared between these countries. The first case likely originated from southern Africa. Conclusion: A lack of a robust genome surveillance network and strong dependence on out-of-country sequencing limit real-time data generation to achieve timely disease outbreak responses, which remains of the utmost importance to mitigate future disease outbreaks in Angola.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Angola/epidemiologia , Epidemiologia Molecular , Pandemias
14.
Nat Commun ; 13(1): 3015, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641529

RESUMO

The transmission dynamics and burden of SARS-CoV-2 in many regions of the world is still largely unknown due to the scarcity of epidemiological analyses and lack of testing to assess the prevalence of disease. In this work, we develop a quantitative framework based on excess mortality data to reconstruct SARS-CoV-2 transmission dynamics and assess the level of underreporting in infections and deaths. Using weekly all-cause mortality data from Iran, we are able to show a strong agreement between our attack rate estimates and seroprevalence measurements in each province and find significant heterogeneity in the level of exposure across the country with 11 provinces reaching near 100% attack rates. Despite having a young population, our analysis reveals that incorporating limited access to medical services in our model, coupled with undercounting of COVID-19-related deaths, leads to estimates of infection fatality rate in most provinces of Iran that are comparable to high-income countries.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Irã (Geográfico)/epidemiologia , Estudos Soroepidemiológicos
15.
Int J Infect Dis ; 107: 101-115, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33862214

RESUMO

OBJECTIVE: There has been no province-level data on the number of coronavirus disease 2019 (COVID-19)-related deaths in Iran since the start of the pandemic. This study was performed to estimate the number of COVID-19 deaths and population-level exposure per province using seasonal all-cause mortality data. METHODS: Time-series data were collected from the National Organization for Civil Registration on the seasonal all-cause mortality from spring 2015 to summer 2020 (from March 21, 2015 to September 21, 2020), in accordance with the Solar Hijri (SH) calendar, to estimate the expected number of seasonal deaths for each province using a piecewise linear regression model. A population-weighted infection fatality ratio was then applied to estimate the level of exposure per province during this period. RESULTS: From the start of winter to the end of summer (from December 22, 2019 to September 21, 2020), there were a total of 58 900 (95% confidence interval 46 900-69 500) excess deaths across all 31 provinces, with 27% (95% confidence interval 20-34%) estimated nationwide exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In particular, Qom and Golestan were among the hardest-hit provinces, with nearly 57% exposure, while another 27 provinces showed significant levels of excess mortality in at least one season with >20% population-level exposure to the virus. Unexpectedly high levels of excess mortality were also detected during fall 2019 (from September 23 to December 21, 2019) across 18 provinces, unrelated and prior to the start of the COVID-19 pandemic. CONCLUSIONS: This study quantified the pattern of spread of COVID-19 across the country and identified areas with the largest epidemic growth requiring the most immediate interventions.


Assuntos
COVID-19/mortalidade , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Irã (Geográfico)/epidemiologia , Estações do Ano
16.
Curr Biol ; 31(21): 4689-4696.e5, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34478645

RESUMO

Estimating viral timescales is fundamental in understanding the evolutionary biology of viruses. Molecular clocks are widely used to reveal the recent evolutionary histories of viruses but may severely underestimate their longer-term origins because of the inverse correlation between inferred rates of evolution and the timescale of their measurement. Here, we provide a predictive mechanistic model that readily explains the rate decay phenomenon over a wide range of timescales and recapitulates the ubiquitous power-law rate decay with a slope of -0.65. We show that standard substitution models fail to correctly estimate divergence times once the most rapidly evolving sites saturate, typically after hundreds of years in RNA viruses and thousands of years in DNA viruses. Our model successfully recreates the observed pattern of decay and explains the evolutionary processes behind the time-dependent rate phenomenon. We then apply our model to re-estimate the date of diversification of genotypes of hepatitis C virus to 423,000 (95% highest posterior density [HPD]: 394,000-454,000) years before present, a time preceding the dispersal of modern humans out of Africa, and show that the most recent common ancestor of sarbecoviruses dates back to 21,000 (95% HPD: 19,000-22,000) years ago, nearly thirty times older than previous estimates. This creates a new perspective for our understanding of the origins of these viruses and also suggests that a substantial revision of evolutionary timescales of other viruses can be similarly achieved.


Assuntos
Evolução Molecular , Modelos Genéticos , Vírus , África , Animais , Hominidae , Humanos , Filogenia , Vírus/genética
17.
Front Public Health ; 9: 768091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976927

RESUMO

The success of public health interventions is highly dependent on the compliance of the general population. State authorities often implement policies without consulting representatives of faith-based communities, thereby overlooking potential implications of public health measures for these parts of society. Although ubiquitous, these challenges are more readily observable in highly religious states. Romania serves as an illustrative example for this, as recent data identify it as the most religious country in Europe. In this paper, we discuss the contributions of the Romanian Orthodox Church (ROC), the major religious institution in the country, to the national COVID-19 mitigation efforts. We present not only the positive outcomes of productive consultations between public health authorities and religious institutions but also the detrimental impact of unidirectional communication. Our work highlights that an efficient dialogue with faith-based communities can greatly enhance the results of public health interventions. As the outlined principles apply to a variety of contexts, the lessons learned from this case study can be generalized into a set of policy recommendations for the betterment of future public health initiatives worldwide.


Assuntos
COVID-19 , Humanos , Pandemias , Saúde Pública , Romênia , SARS-CoV-2
18.
Epidemics ; 36: 100472, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34153623

RESUMO

INTRODUCTION: Many countries with an early outbreak of SARS-CoV-2 struggled to gauge the size and start date of the epidemic mainly due to limited testing capacities and a large proportion of undetected asymptomatic and mild infections. Iran was among the first countries with a major outbreak outside China. METHODS: We constructed a globally representative sample of 802 genomes, including 46 samples from patients inside or with a travel history to Iran. We then performed a phylogenetic analysis to identify clades related to samples from Iran and estimated the start of the epidemic and early doubling times in cases. We leveraged air travel data from 36 exported cases of COVID-19 to estimate the point-prevalence and the basic reproductive number across the country. We also analysed the province-level all-cause mortality data during winter and spring 2020 to estimate under-reporting of COVID-19-related deaths. Finally, we use this information in an SEIR model to reconstruct the early outbreak dynamics and assess the effectiveness of intervention measures in Iran. RESULTS: By identifying the most basal clade that contained genomes from Iran, our phylogenetic analysis showed that the age of the root is placed on 2019-12-21 (95 % HPD: 2019-09-07 - 2020-02-14). This date coincides with our estimated epidemic start date on 2019-12-25 (95 %CI: 2019-12-11 - 2020-02-24) based air travel data from exported cases with an early doubling time of 4.0 (95 %CI: 1.4-6.7) days in cases. Our analysis of all-cause mortality showed 21.9 (95 % CI: 16.7-27.2) thousand excess deaths by the end of summer. Our model forecasted the second epidemic peak and suggested that by 2020-08-31 a total of 15.0 (95 %CI: 4.9-25.0) million individuals recovered from the disease across the country. CONCLUSION: These findings have profound implications for assessing the stage of the epidemic in Iran despite significant levels of under-reporting. Moreover, the results shed light on the dynamics of SARS-CoV-2 transmissions in Iran and central Asia. They also suggest that in the absence of border screening, there is a high risk of introduction from travellers from areas with active outbreaks. Finally, they show both that well-informed epidemic models are able to forecast episodes of resurgence following a relaxation of interventions, and that NPIs are key to controlling ongoing epidemics.


Assuntos
COVID-19 , Epidemias , Humanos , Irã (Geográfico)/epidemiologia , Filogenia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa