Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Plant ; 174(1): e13475, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34114235

RESUMO

Protein ubiquitination is one of the most important posttranslational modifications in eukaryotic cells, and it is involved in a variety of biological processes, including abiotic stress response. The ubiquitination modification is highly specific, which depends on the accurate recognition of substrate proteins by ubiquitin ligase. Plant U-box (PUB) proteins are a class of ubiquitin ligases, multiple members of which have shown to participate in water-deficit stress in Arabidopsis and rice. U-box gene family and large-scale profiling of the ubiquitome in potato has not been reported to date, although it is one of the most important food crops. The identified 66 U-box genes from the potato genome database were unevenly distributed on 10 chromosomes. These StPUBs have a large number of tandem repeat sequences. Analysis of gene expression characteristics revealed that many StPUBs responded to abiotic stress. Three hundred and fourteen lys modification sites were identified under PEG-induced drought stress, which were distributed on 200 proteins, with 25 differential ubiquitination modification sites, most of which were up-regulated. The ubiquitination modification in potato protein was enhanced under PEG-induced drought stress, and U-box ubiquitin ligase was involved. This study provides an overall strategy and rich data set to clarify the effects of ubiquitination on potatoes under PEG-induced drought stress and the ubiquitination modification involved in potato U-box genes in response to PEG-induced drought stress.


Assuntos
Secas , Solanum tuberosum , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Estresse Fisiológico/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
Physiol Mol Biol Plants ; 27(10): 2421-2431, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34744375

RESUMO

Plants face numerous challenges such as biotic and abiotic stresses during their whole lifecycle. As they are sessile in nature, they ought to develop multiple ways to act during stressed conditions to maintain cellular homeostasis. Among various defense mechanisms, the small ubiquitin-like modifiers (SUMO) pathway is considered as the most important because several nuclear proteins regulated by this pathway are involved in several cellular functions such as response to stress, transcription, translation, metabolism of RNA, energy metabolism, repairing damaged DNA, ensuring genome stability and nuclear trafficking. In general, the SUMO pathway has its own particular set of enzymes E1, E2, and E3. The SUMO conjugating enzyme [SCE (E2)] is a very crucial member of the pathway which can transfer SUMO to its target protein even without the involvement of E3. More than just a middle player, it has shown its involvement in effective triggered immunity in crops like tomato and various abiotic stresses like drought and salinity in maize, rice, and Arabidopsis. This review tries to explore the importance of the SUMOylation process, focusing on the E2 enzyme and its regulatory role in the abiotic stress response, plant immunity, and DNA damage repair.

3.
Int J Mol Sci ; 21(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326224

RESUMO

Owing to a sessile lifestyle in nature, plants are routinely faced with diverse hostile environments such as various abiotic and biotic stresses, which lead to accumulation of free radicals in cells, cell damage, protein denaturation, etc., causing adverse effects to cells. During the evolution process, plants formed defense systems composed of numerous complex gene regulatory networks and signal transduction pathways to regulate and maintain the cell homeostasis. Among them, ubiquitin-proteasome pathway (UPP) is the most versatile cellular signal system as well as a powerful mechanism for regulating many aspects of the cell physiology because it removes most of the abnormal and short-lived peptides and proteins. In this system, the ubiquitin-conjugating enzyme (E2) plays a critical role in transporting ubiquitin from the ubiquitin-activating enzyme (E1) to the ubiquitin-ligase enzyme (E3) and substrate. Nevertheless, the comprehensive study regarding the role of E2 enzymes in plants remains unexplored. In this review, the ubiquitination process and the regulatory role that E2 enzymes play in plants are primarily discussed, with the focus particularly put on E2's regulation of biological functions of the cell.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Animais , Catálise , Humanos , Ubiquitinação
4.
Funct Plant Biol ; 512024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38669463

RESUMO

Plants regularly encounter various environmental stresses such as salt, drought, cold, heat, heavy metals and pathogens, leading to changes in their proteome. Of these, a post-translational modification, SUMOylation is particularly significant for its extensive involvement in regulating various plant molecular processes to counteract these external stressors. Small ubiquitin-like modifiers (SUMO) protein modification significantly contributes to various plant functions, encompassing growth, development and response to environmental stresses. The SUMO system has a limited number of ligases even in fully sequenced plant genomes but SUMO E3 ligases are pivotal in recognising substrates during the process of SUMOylation. E3 ligases play pivotal roles in numerous biological and developmental processes in plants, including DNA repair, photomorphogenesis, phytohormone signalling and responses to abiotic and biotic stress. A considerable number of targets for E3 ligases are proteins implicated in reactions to abiotic and biotic stressors. This review sheds light on how plants respond to environmental stresses by focusing on recent findings on the role of SUMO E3 ligases, contributing to a better understanding of how plants react at a molecular level to such stressors.


Assuntos
Estresse Fisiológico , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Plantas/enzimologia , Plantas/metabolismo , Sumoilação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
5.
Plant Physiol Biochem ; 154: 557-563, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32912489

RESUMO

The ubiquitin-proteasome system (UPS) is one of the main ways of eukaryotic protein degradation and post-translational modification. It has proven as an essential process for plants to respond to abiotic stresses. Plant U-box (PUB) protein acts as a ubiquitin ligase, which recognizes and ubiquitinates the target proteins. Many PUBs have been involved in water stress in Arabidopsis and rice, but similar comprehensive studies in potato remained limited. In this study, the overexpressed and interfered transgenic potato plants of StPUB27 were obtained and their performances were evaluated under osmotic stress. The result showed that overexpression of StPUB27 accelerated the dehydration of detached leaves companied with greater stomatal conductance, while the down-regulated StPUB27 expression by RNA interference (RNAi) showed a smaller stomatal conductance and a lower rate of water loss in detached leaves, thus showing higher tolerance to osmotic stress. In addition, no significant changes in the proline content were observed between StPUB27 overexpressed and RNAi potato plants. The result demonstrated that potato E3 ubiquitin ligase PUB27 may negatively regulate drought tolerance by mediating stomatal conductance.


Assuntos
Secas , Proteínas de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Solanum tuberosum , Ubiquitina-Proteína Ligases/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Solanum tuberosum/enzimologia , Solanum tuberosum/genética , Estresse Fisiológico , Ubiquitina-Proteína Ligases/genética
6.
Int J Genomics ; 2020: 9703638, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802829

RESUMO

SUMO-conjugating enzymes (SCE) and SUMO (Small Ubiquitin-Like Modifiers) genes are important components of SUMOylation. SCE has a crucial role during the SUMOylation process which acts as a catalyst to transfer SUMO to the target protein. Comprehensive studies on SCE and SUMO have been performed in some plants, but studies on these genes remain limited in potato. This study is aimed at exploring the role of StSCE and StSUMO genes in abiotic stress conditions. Nine and seven putative StSCEs and StSUMO genes, respectively, were identified using different methods and databases available for potato. Chromosomal localization showed that SCE and StSUMO genes are unevenly distributed on 7 different chromosomes. Potato genome database was accessed for the expression profile of StSCE and StSUMO genes, and these genes were differentially expressed in different tissues and organs during different phases of plant growth. The expression patterns on different treatments were further evaluated using qRT-PCR for all the StSCE and StSUMO genes. The expression was upregulated in StSCE1/5/6 and 7 under salt and PEG treatment. StSUMO 1/2 and 4 were upregulated under salt stress whereas StSCE9 and StSUMO2 and 4 were observed downregulated under PEG treatment. The results of this study could be useful to explore the role of StSCE genes in potato improvement.

7.
Plant Physiol Biochem ; 146: 438-446, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31812009

RESUMO

The ubiquitin/26S proteasome pathway is widely related to plant growth and metabolism and response to treatment by specifically degrading ubiquitin-modified proteins, including RING-finger-type E3 ubiquitin ligase (RING). The RING finger protein (RFP) gene family, determining the specificity of the ubiquitination process, is numerous and complex in function. In this study, we constructed a pCEGFP-StRFP2 fusion protein expression vector and transformed it into tobacco to achieve transient expression, thereby confirming that StRFP2 is localized in the cell membrane and cytoplasm. The result of qRT-PCR analysis showed that StRFP2 gene was significantly expressed in potato leaves, and the expression level of StRFP2 was significantly up-regulated under drought treatment. The transgenic plants of overexpressing StRFP2 gene were obtained with Agrobacterium tumefaciens-mediated transformation. Plant height, stem diameter, root length, fresh weight and root-shoot ratio of transgenic plants were significantly higher than those of non-transgenic plants (WT), indicating that the growth of plants was significantly promoted after overexpression of StRFP2 gene. Under PEG osmotic stress, the expressional level of StRFP2 in transgenic potato plants was significantly higher than that of WT. Furthermore, the free proline content and CAT activity in transgenic plants were higher than WT, on the contrary, MDA was lower than WT, and transgenic plants have stronger water retention capacity under simulated drought stress treatment, which indicated that StRFP2 could strengthen the tolerance of plants responding to drought stress. The above evidence strongly suggested that the StRFP2 gene is obviously up-regulated expression by drought stress, thereby enhancing the drought tolerance of the potato.


Assuntos
Solanum tuberosum , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa