Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Phys Chem Chem Phys ; 26(2): 760-769, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37862004

RESUMO

Biomembranes are a key component of all living systems. Most research on membranes is restricted to ambient physiological conditions. However, the influence of extreme conditions, such as the deep subsurface on Earth or extraterrestrial environments, is less well understood. The deep subsurface of Mars is thought to harbour high concentrations of chaotropic salts in brines, yet we know little about how these conditions would influence the habitability of such environments. Here, we investigated the combined effects of high concentrations of Mars-relevant salts, including sodium and magnesium perchlorate and sulphate, and high hydrostatic pressure on the stability, structure, and function of a bacterial model membrane. To this end, several biophysical techniques have been employed, including calorimetry, fluorescence and CD spectroscopy, confocal microscopy, and small-angle X-ray scattering. We demonstrate that sulphate and perchlorate salts affect the properties of the membrane differently, depending on the counterion present (Na+vs. Mg2+). We found that the perchlorates, which are believed to be abundant salts in the Martian environment, induce a more hydrated and less ordered membrane, strongly favouring the physiologically relevant fluid-like phase of the membrane even under high-pressure stress. Moreover, we show that the activity of the phospholipase A2 is strongly modulated by both high pressure and salt. Compellingly, in the presence of the chaotropic perchlorate, the enzymatic reaction proceeded at a reasonable rate even in the presence of condensing Mg2+ and at high pressure, suggesting that bacterial membranes could still persist when challenged to function in such a highly stressed Martian environment.


Assuntos
Meio Ambiente Extraterreno , Marte , Meio Ambiente Extraterreno/química , Sais/química , Sulfatos
2.
J Liposome Res ; 34(1): 88-96, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37337884

RESUMO

Upon in vivo administration of nanoparticles, a protein corona forms on their surface and affects their half-life in circulation, biodistribution properties, and stability; in turn, the composition of the protein corona depends on the physico-chemical properties of the nanoparticles. We have previously observed lipid composition-dependent in vitro and in vivo microRNA delivery from lipid nanoparticles. Here, we carried out an extensive physico-chemical characterisation to understand the role of the lipid composition on the in vivo fate of lipid-based nanoparticles. We used a combination of differential scanning calorimetry (DSC), membrane deformability measurements, isothermal titration calorimetry (ITC), and dynamic light scattering (DLS) to probe the interactions between the nanoparticle surface and bovine serum albumin (BSA) as a model protein. The lipid composition influenced membrane deformability, improved lipid intermixing, and affected the formation of lipid domains while BSA binding to the liposome surface was affected by the PEGylated lipid content and the presence of cholesterol. These findings highlight the importance of the lipid composition on the protein-liposome interaction and provide important insights for the design of lipid-based nanoparticles for drug delivery applications.


Assuntos
Nanopartículas , Coroa de Proteína , Lipossomos , Distribuição Tecidual , Nanopartículas/química , Calorimetria , Soroalbumina Bovina/química , Lipídeos
3.
Phys Chem Chem Phys ; 24(11): 7028-7044, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35258065

RESUMO

The promoter regions of important oncogenes such as BCL2 and KRAS contain GC-rich sequences that can form distinctive noncanonical DNA structures involved in the regulation of transcription: G-quadruplexes on the G-rich strand and i-motifs on the C-rich strand. Interestingly, BCL2 and KRAS promoter i-motifs are highly dynamic in nature and exist in a pH-dependent equilibrium with hairpin and even with hybrid i-motif/hairpin species. Herein, the effects of pH and presence of cell-mimicking molecular crowding conditions on conformational equilibria of the BCL2 and KRAS i-motif-forming sequences were investigated by ultraviolet resonance Raman (UVRR) and circular dichroism (CD) spectroscopies. Multivariate analysis of CD data was essential to model the presence and identity of the species involved. Analysis of UVRR spectra measured as a function of pH, performed also by the two-dimensional correlation spectroscopy (2D-COS) technique, showed the role of several functional groups in the DNA conformational transitions, and provided structural and dynamic information. Thus, the UVRR investigation of intramolecular interactions and of local and environmental dynamics in promoting the different species induced by the solution conditions provided valuable insights into i-motif conformational transitions. The combined use of the two spectroscopic tools is emphasized by the relevant possibility of working in the same DNA concentration range and by the heterospectral UVRR/CD 2D-COS analysis. The results of this study shed light on the factors that can influence at the molecular level the equilibrium between the different conformational species putatively involved in the oncogene expression.


Assuntos
Quadruplex G , Dicroísmo Circular , DNA/química , Conformação de Ácido Nucleico , Análise Espectral Raman
4.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563194

RESUMO

A set of guanine-rich aptamers able to preferentially recognize full-length huntingtin with an expanded polyglutamine tract has been recently identified, showing high efficacy in modulating the functions of the mutated protein in a variety of cell experiments. We here report a detailed biophysical characterization of the best aptamer in the series, named MS3, proved to adopt a stable, parallel G-quadruplex structure and show high nuclease resistance in serum. Confocal microscopy experiments on HeLa and SH-SY5Y cells, as models of non-neuronal and neuronal cells, respectively, showed a rapid, dose-dependent uptake of fluorescein-labelled MS3, demonstrating its effective internalization, even in the absence of transfecting agents, with no general cytotoxicity. Then, using a well-established Drosophila melanogaster model for Huntington's disease, which expresses the mutated form of human huntingtin, a significant improvement in the motor neuronal function in flies fed with MS3 was observed, proving the in vivo efficacy of this aptamer.


Assuntos
Doença de Huntington , Animais , Modelos Animais de Doenças , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo
5.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36293267

RESUMO

Two analogues of the MS3 aptamer, which was previously shown to have an exquisite capability to selectively bind and modulate the activity of mutant huntingtin (mHTT), have been here designed and evaluated in their physicochemical and biological properties. Featured by a distinctive propensity to form complex G-quadruplex structures, including large multimeric aggregates, the original 36-mer MS3 has been truncated to give a 33-mer (here named MS3-33) and a 17-mer (here named MS3-17). A combined use of different techniques (UV, CD, DSC, gel electrophoresis) allowed a detailed physicochemical characterization of these novel G-quadruplex-forming aptamers, tested in vitro on SH-SY5Y cells and in vivo on a Drosophila Huntington's disease model, in which these shorter MS3-derived oligonucleotides proved to have improved bioactivity in comparison with the parent aptamer.


Assuntos
Aptâmeros de Nucleotídeos , Quadruplex G , Doença de Huntington , Neuroblastoma , Humanos , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/química , Proteína Huntingtina/genética
6.
Phys Chem Chem Phys ; 23(28): 15030-15037, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34151914

RESUMO

Under slightly acidic conditions, cytosine-rich DNA sequences can form non-canonical secondary structures called i-motifs, which occur as four stretches of cytosine repeats form hemi-protonated C·C+ base pairs. The growing interest in the i-motif structures as important components in functional DNA-based nanotechnology or as potential targets of anticancer drugs, increases the need for a deep understanding of the energetics of their structural transitions. Here, a combination of spectroscopic and calorimetric techniques is used to unravel the thermodynamics of folding of an i-motif DNA under favorable conditions. The results give new insights into the energetic aspects of i-motifs and show that thermodynamic and thermal stability are related but not identical properties of such DNA structures.


Assuntos
DNA/química , Motivos de Nucleotídeos , Pareamento de Bases , Citosina/química , Concentração de Íons de Hidrogênio , Análise de Componente Principal , Relação Estrutura-Atividade , Termodinâmica
7.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466280

RESUMO

DNA G-quadruplexes (G4s) form in relevant genomic regions and intervene in several biological processes, including the modulation of oncogenes expression, and are potential anticancer drug targets. The human KRAS proto-oncogene promoter region contains guanine-rich sequences able to fold into G4 structures. Here, by using circular dichroism and differential scanning calorimetry as complementary physicochemical methodologies, we compared the thermodynamic stability of the G4s formed by a shorter and a longer version of the KRAS promoter sequence, namely 5'-AGGGCGGTGTGGGAATAGGGAA-3' (KRAS 22RT) and 5'-AGGGCGGTGTGGGAAGAGGGAAGAGGGGGAGG-3' (KRAS 32R). Our results show that the unfolding mechanism of KRAS 32R is more complex than that of KRAS 22RT. The different thermodynamic stability is discussed based on the recently determined NMR structures. The binding properties of TMPyP4 and BRACO-19, two well-known G4-targeting anticancer compounds, to the KRAS G4s were also investigated. The present physicochemical study aims to help in choosing the best G4 target for potential anticancer drugs.


Assuntos
Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Acridinas/farmacologia , Antineoplásicos/farmacologia , Sítios de Ligação/genética , Varredura Diferencial de Calorimetria/métodos , Dicroísmo Circular , DNA/genética , Quadruplex G , Guanina/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Oncogenes/genética , Porfirinas/farmacologia , Proto-Oncogene Mas , Termodinâmica
8.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800505

RESUMO

Chemotherapy represents the most applied approach to cancer treatment. Owing to the frequent onset of chemoresistance and tumor relapses, there is an urgent need to discover novel and more effective anticancer drugs. In the search for therapeutic alternatives to treat the cancer disease, a series of hybrid pyrazolo[3,4-d]pyrimidin-4(5H)-ones tethered with hydrazide-hydrazones, 5a-h, was synthesized from condensation reaction of pyrazolopyrimidinone-hydrazide 4 with a series of arylaldehydes in ethanol, in acid catalysis. In vitro assessment of antiproliferative effects against MCF-7 breast cancer cells, unveiled that 5a, 5e, 5g, and 5h were the most effective compounds of the series and exerted their cytotoxic activity through apoptosis induction and G0/G1 phase cell-cycle arrest. To explore their mechanism at a molecular level, 5a, 5e, 5g, and 5h were evaluated for their binding interactions with two well-known anticancer targets, namely the epidermal growth factor receptor (EGFR) and the G-quadruplex DNA structures. Molecular docking simulations highlighted high binding affinity of 5a, 5e, 5g, and 5h towards EGFR. Circular dichroism (CD) experiments suggested 5a as a stabilizer agent of the G-quadruplex from the Kirsten ras (KRAS) oncogene promoter. In the light of these findings, we propose the pyrazolo-pyrimidinone scaffold bearing a hydrazide-hydrazone moiety as a lead skeleton for designing novel anticancer compounds.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama , Proliferação de Células/efeitos dos fármacos , Quadruplex G , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas p21(ras) , Pirimidinonas , Antineoplásicos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Feminino , Humanos , Células MCF-7 , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Pirimidinonas/síntese química , Pirimidinonas/química , Pirimidinonas/farmacologia
9.
Molecules ; 26(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34361559

RESUMO

The aim of this research is to obtain new data about the complexation between ß-cyclodextrin (ß-CD) and benzoic acid (BA) as a model reaction of the complex formation of hydrophobic molecules with cyclodextrins (CDs) in various media. This research may help developing cyclodextrin-based pharmaceutical formulations through the choice of the appropriate solvent mixture that may be employed in the industrial application aiming to control the reactions/processes in liquid phase. In this paper, NMR results for the molecular complex formation between BA and ß-CD ([BA⊂ß-CD]) in D2O-DMSO-d6 and in D2O-EtOH have shown that the stability of the complex in the H2O-DMSO-d6 varies within the experimental error, while decreases in H2O-EtOH. Changes in the Gibbs energy of BA resolvation in water and water-dimethylsulfoxide mixtures have been obtained and have been used in the analysis of the reagent solvation contributions into the Gibbs energy changes of the [BA⊂ß-CD] molecular complex formation. Quantum chemical calculations of the interaction energy between ß-CD and BA as well as the structure of the [BA⊂ß-CD] complex and the energy of ß-CD and BA interaction in vacuum and in the medium of water, methanol and dimethylsulfoxide solvents are carried out. The stability of [BA⊂ß-CD] complex in H2O-EtOH and H2O-DMSO solvents, obtained by different methods, are compared. The thermodynamic parameters of the [BA⊂ß-CD] molecular complexation as well as the reagent solvation contributions in H2O-EtOH and H2O-DMSO mixtures were analyzed by the solvation-thermodynamic approach.

10.
Phys Chem Chem Phys ; 22(15): 8128-8140, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32246758

RESUMO

G-Quadruplexes (G4s) are noncanonical nucleic acid structures involved in the regulation of several biological processes of many organisms. The rational design of G4-targeting molecules developed as potential anticancer and antiviral therapeutics is a complex problem intrinsically due to the structural polymorphism of these peculiar DNA structures. The aim of the present work is to show how Ultraviolet Resonance Raman (UVRR) spectroscopy can complement other techniques in providing valuable information about ligand/G4 interactions in solution. Here, the binding of BRACO-19 and Pyridostatin - two of the most potent ligands - to selected biologically relevant G4s was investigated by polarized UVRR scattering at 266 nm. The results give new insights into the binding mode of these ligands to G4s having different sequences and topologies by performing an accurate analysis of peaks assigned to specific groups and their changes upon binding. Indeed, the UVRR data not only show that BRACO-19 and Pyridostatin interact with different G4 sites, but also shed light on the ligand and G4 chemical groups really involved in the interaction. In addition, UVRR results complemented by circular dichroism data clearly indicate that the binding mode of a ligand can also depend on the conformation(s) of the target G4. Overall, these findings demonstrate the utility of using UVRR spectroscopy in the investigation of G4s and G4-ligand interactions in solution.


Assuntos
DNA/química , Quadruplex G , Análise Espectral Raman , Raios Ultravioleta , Dicroísmo Circular , Ligantes , Ligação Proteica
11.
Phys Chem Chem Phys ; 21(4): 2093-2101, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30638221

RESUMO

The G-quadruplex-forming telomeric sequence (TTAGGG)4TT was investigated by polarized Ultraviolet Resonance Raman Scattering (UVRR) at 266 nm. The presence of 40% poly(ethylene glycol) and the so-called "self-crowding" condition were used to induce the hybrid-to-parallel topology transition. Analysis of frequency shifts with temperature showed the role of several functional groups in the topological transitions and provides structural dynamical information. Circular dichroism under similar conditions was used as a reference. UVRR shed light on the effect of intramolecular interactions and of local and environmental dynamics in promoting different G-quadruplex topologies, induced by solution conditions or by temperature changes. Overall, these findings showed the enormous potential of this spectroscopy for G-quadruplex conformational studies.


Assuntos
DNA/química , Quadruplex G , Dicroísmo Circular , Humanos , Análise Espectral Raman , Raios Ultravioleta
12.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt B): 1341-1352, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28130159

RESUMO

BACKGROUND: G-quadruplex (G4) structures are key elements in the regulation of cancer cell proliferation and their targeting is deemed to be a promising strategy in anticancer therapy. METHODS: A tandem application of ligand-based virtual screening (VS) calculations together with the experimental G-quadruplex on Oligo Affinity Support (G4-OAS) assay was employed to discover novel G4-targeting compounds. The interaction of the selected compounds with the investigated G4 in solution was analysed through a series of biophysical techniques and their biological activity investigated by immunofluorescence and MTT assays. RESULTS: A focused library of 60 small molecules, designed as putative G4 groove binders, was identified through the VS. The G4-OAS experimental screening led to the selection of 7 ligands effectively interacting with the G4-forming human telomeric DNA. Evaluation of the biological activity of the selected compounds showed that 3 ligands of this sub-library induced a marked telomere-localized DNA damage response in human tumour cells. CONCLUSIONS: The combined application of virtual and experimental screening tools proved to be a successful strategy to identify new bioactive chemotypes able to target the telomeric G4 DNA. These compounds may represent useful leads for the development of more potent and selective G4 ligands. GENERAL SIGNIFICANCE: Expanding the repertoire of the available G4-targeting chemotypes with improved physico-chemical features, in particular aiming at the discovery of novel, selective G4 telomeric ligands, can help in developing effective anti-cancer drugs with fewer side effects. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.


Assuntos
Antineoplásicos/farmacologia , DNA de Neoplasias/efeitos dos fármacos , Desenho de Fármacos , Quadruplex G/efeitos dos fármacos , Guanosina/metabolismo , Ensaios de Triagem em Larga Escala , Neoplasias/tratamento farmacológico , Telômero/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA de Neoplasias/química , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Relação Dose-Resposta a Droga , Guanosina/química , Humanos , Ligantes , Modelos Moleculares , Neoplasias/genética , Neoplasias/patologia , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Telômero/química , Telômero/genética , Telômero/metabolismo , Fatores de Tempo
13.
Molecules ; 22(11)2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29077046

RESUMO

Harmine belongs to a group of ß-carboline alkaloids endowed with antitumor properties. Harmine and its derivatives are thought to bind to DNA and interfere with topoisomerase activities. We investigated the base-dependent binding of harmine, and three of its synthetic anticancer-active derivatives to the genomic DNA from calf thymus and two synthetic 20-mer double helices, the poly(dG-dC)·poly(dG-dC) and the poly(dA-dT)·poly(dA-dT), by means of UV-Vis and circular dichroism (CD) spectroscopies. The data show that the DNA binding and stabilising properties of the investigated derivatives are base pair-dependent. These results could be used as a guide to design and develop further bioactive analogues.


Assuntos
DNA/química , Harmina/análogos & derivados , Harmina/química , Análise Espectral , Dicroísmo Circular , Estrutura Molecular , Conformação de Ácido Nucleico , Espectrofotometria Ultravioleta , Análise Espectral/métodos , Relação Estrutura-Atividade
14.
Org Biomol Chem ; 13(27): 7421-9, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25997822

RESUMO

As part of the genome, human telomeric regions can be damaged by the chemically reactive molecules responsible for oxidative DNA damage. Considering that G-quadruplex structures have been proven to occur in human telomere regions, several studies have been devoted to investigating the effect of oxidation products on the properties of these structures. However only investigations concerning the presence in G-quadruplexes of the main oxidation products of deoxyguanosine and deoxyadenosine have appeared in the literature. Here, we investigated the effects of 5-hydroxymethyl-2'-deoxyuridine (5-hmdU), one of the main oxidation products of T, on the physical-chemical properties of the G-quadruplex structures formed by two human telomeric sequences. Collected calorimetric, circular dichroism and electrophoretic data suggest that, in contrast to most of the results on other damage, the replacement of a T with a 5-hmdU results in only negligible effects on structural stability. Reported results and other data from literature suggest a possible protecting effect of the loop residues on the other parts of the G-quadruplexes.


Assuntos
Quadruplex G , Telômero/química , Timidina/análogos & derivados , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Humanos , Desnaturação de Ácido Nucleico , Oxirredução , Temperatura , Timidina/química
15.
Nucleic Acids Res ; 41(1): 327-39, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23104426

RESUMO

Prion protein (PrP) is involved in lethal neurodegenerative diseases, and many issues remain unclear about its physio-pathological role. Quadruplex-forming nucleic acids (NAs) have been found to specifically bind to both PrP cellular and pathological isoforms. To clarify the relevance of these interactions, thermodynamic, kinetic and structural studies have been performed, using isothermal titration calorimetry, surface plasmon resonance and circular dichroism methodologies. Three quadruplex-forming sequences, d(TGGGGT), r(GGAGGAGGAGGA), d(GGAGGAGGAGGA), and various forms of PrP were selected for this study. Our results showed that these quadruplexes exhibit a high affinity and specificity toward PrP, with K(D) values within the range 62÷630 nM, and a weaker affinity toward a PrP-ß oligomer, which mimics the pathological isoform. We demonstrated that the NA quadruplex architecture is the structural determinant for the recognition by both PrP isoforms. Furthermore, we spotted both PrP N-terminal and C-terminal domains as the binding regions involved in the interaction with DNA/RNAs, using several PrP truncated forms. Interestingly, a reciprocally induced structure loss was observed upon PrP-NA interaction. Our results allowed to surmise a quadruplex unwinding-activity of PrP, that may have a feedback in vivo.


Assuntos
Quadruplex G , Príons/química , Sítios de Ligação , Calorimetria , Dicroísmo Circular , DNA/química , Cinética , Príons/metabolismo , Ligação Proteica , RNA/química , Ressonância de Plasmônio de Superfície , Termodinâmica
16.
Anal Chem ; 86(9): 4126-30, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24725064

RESUMO

A simple, cheap, and highly reproducible affinity chromatography-based method has been developed for the screening of G-quadruplex binders. The tested compounds were flowed through a polystyrene resin functionalized with an oligonucleotide able to form, in proper conditions, a G-quadruplex structure. Upon cation-induced control of the folding/unfolding processes of the immobilized G-quadruplex-forming sequence, small molecules specifically interacting with the oligonucleotide structure were first captured and then released depending on the used working solution. This protocol, first optimized for different kinds of known G-quadruplex ligands and then applied to a set of putative ligands, has allowed one to fully reuse the same functionalized resin batch, recycled for several tens of experiments without loss in efficiency and reproducibility.


Assuntos
Cromatografia de Afinidade/instrumentação , Quadruplex G , Ligantes
17.
Langmuir ; 30(48): 14427-33, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25396753

RESUMO

The stabilization of oil in water nano-emulsions by means of a polymer coating is extremely important; it prolongs the shelf life of the product and makes it suitable for a variety of applications ranging from nutraceutics to cosmetics and pharmaceutics. To date, an effective methodology to assess the best formulations in terms of thermodynamic stability has yet to be designed. Here, we perform a complete physicochemical characterization based on isothermal titration calorimetry (ITC) compared to conventional dynamic light scattering (DLS) to identify polymer concentration domains that are thermodynamically stable and to define the degree of stability through thermodynamic functions depending upon any relevant parameter affecting the stability itself, such as type of polymer coating, droplet distance, etc. For instance, the method was proven by measuring the energetics in the case of two different biopolymers, chitosan and poly-L-lysine, and for different concentrations of the emulsion coated with poly-L-lysine.


Assuntos
Calorimetria/métodos , Emulsões/química , Polímeros/química , Termodinâmica , Quitosana/química , Polilisina/química
18.
Methods ; 64(1): 43-51, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23500655

RESUMO

Differential Scanning Calorimetry (DSC) is a straightforward methodology to characterize the energetics of thermally-induced transitions of DNA and other biological macromolecules. Therefore, DSC has been used to study the thermodynamic stability of several nucleic acids structures. G-quadruplexes are among the most important non-canonical nucleic acid architectures that are receiving great consideration. This article reports examples on the contribution of DSC to the knowledge of G-quadruplex structures. The selected case studies show the potential of this method in investigating the structure stability of G-quadruplex forming nucleic acids, and in providing information on their structural complexity. Indeed, DSC can determine thermodynamic parameters of G-quadruplex folding/unfolding processes, but it can also be useful to reveal the formation of multiple conformations or the presence of intermediate states along the unfolding pathway, and to evaluate the impact of chemical modifications on their structural stability. This article aims to show that DSC is an important complementary methodology to structural techniques, such as NMR and X-ray crystallography, in the study of G-quadruplex forming nucleic acids.


Assuntos
Varredura Diferencial de Calorimetria/métodos , DNA/química , Quadruplex G , Modelos Moleculares , Termodinâmica
19.
Gels ; 10(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38534611

RESUMO

This study endeavored to overcome the physiological barriers hindering optimal bioavailability in ophthalmic therapeutics by devising drug delivery platforms that allow therapeutically effective drug concentrations in ocular tissues for prolonged times. Thermosensitive drug delivery platforms were formulated by blending poloxamers (F68 and F127) with low-molecular-weight hyaluronic acid (HA) in various concentrations and loaded with hydrocortisone (HC). Among the formulations examined, only three were deemed suitable based on their desirable gelling properties at a temperature close to the eye's surface conditions while also ensuring minimal gelation time for swift ocular application. Rheological analyses unveiled the ability of the formulations to develop gels at suitable temperatures, elucidating the gel-like characteristics around the physiological temperature essential for sustained drug release. The differential scanning calorimetry findings elucidated intricate hydrogel-water interactions, indicating that HA affects the water-polymer interactions within the gel by increasing the platform hydrophilicity. Also, in vitro drug release studies demonstrated significant hydrocortisone release within 8 h, governed by an anomalous transport mechanism, prompting further investigation for optimized release kinetics. The produced platforms offer promising prospects for efficacious ocular drug delivery, addressing pivotal challenges in ocular therapeutics and heralding future advancements in the domain.

20.
Biochim Biophys Acta ; 1820(12): 2037-43, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23000492

RESUMO

BACKGROUND: The abasic sites represent one of the most frequent lesions of DNA and most of the events able to generate such modifications involve guanine bases. G-rich sequences are able to form quadruplex structures that have been proved to be involved in several important biological processes. METHODS: In this paper, we report investigations, based on calorimetric, UV, CD and electrophoretic techniques, on 12 oligodeoxynucleotides analogues of the quadruplex forming human telomere sequence d[TA(G(3)T(2)A)(3)G(3)], in which each guanine has been replaced, one at a time, by an abasic site mimic. RESULTS: Although all data show that the modified sequences preserve their ability to form quadruplex structures, the thermodynamic parameters clearly indicate that the presence of an abasic site decreases their thermal stability compared to the parent unmodified sequence, particularly if the replacement concerns one of the guanosines involved in the formation of the central G-tetrad. CONCLUSIONS: The collected data indicate that the effects of the presence of abasic site lesions in telomeric quadruplex structures are site-specific. The most dramatic consequences come out when this lesion involves a guanosine in the centre of a G-run. GENERAL SIGNIFICANCE: Abasic sites, by facilitating the G-quadruplex disruption, could favour the formation of the telomerase primer. Furthermore they could have implications in the pharmacological approach targeting telomere.


Assuntos
Quadruplex G , Guanina/química , Oligodesoxirribonucleotídeos/química , Telômero/química , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Humanos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa