Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 18(10): 1104-1116, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28825701

RESUMO

Cross-regulation of Toll-like receptor (TLR) responses by cytokines is essential for effective host defense, avoidance of toxicity and homeostasis, but the underlying mechanisms are not well understood. Our comprehensive epigenomics approach to the analysis of human macrophages showed that the proinflammatory cytokines TNF and type I interferons induced transcriptional cascades that altered chromatin states to broadly reprogram responses induced by TLR4. TNF tolerized genes encoding inflammatory molecules to prevent toxicity while preserving the induction of genes encoding antiviral and metabolic molecules. Type I interferons potentiated the inflammatory function of TNF by priming chromatin to prevent the silencing of target genes of the transcription factor NF-κB that encode inflammatory molecules. The priming of chromatin enabled robust transcriptional responses to weak upstream signals. Similar chromatin regulation occurred in human diseases. Our findings reveal that signaling crosstalk between interferons and TNF is integrated at the level of chromatin to reprogram inflammatory responses, and identify previously unknown functions and mechanisms of action of these cytokines.


Assuntos
Epigênese Genética , Inflamação/etiologia , Inflamação/metabolismo , Interferon Tipo I/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Análise por Conglomerados , Biologia Computacional/métodos , Citocinas/genética , Citocinas/metabolismo , Epigenômica/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lipopolissacarídeos/imunologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Fatores de Transcrição/metabolismo
2.
Immunity ; 51(2): 241-257.e9, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31303399

RESUMO

Cytokine tumor necrosis factor (TNF)-mediated macrophage polarization is important for inflammatory disease pathogenesis, but the mechanisms regulating polarization are not clear. We performed transcriptomic and epigenomic analysis of the TNF response in primary human macrophages and revealed late-phase activation of SREBP2, the master regulator of cholesterol biosynthesis genes. TNF stimulation extended the genomic profile of SREBP2 occupancy to include binding to and activation of inflammatory and interferon response genes independently of its functions in sterol metabolism. Genetic ablation of SREBP function shifted the balance of macrophage polarization from an inflammatory to a reparative phenotype in peritonitis and skin wound healing models. Genetic ablation of SREBP activity in myeloid cells or topical pharmacological inhibition of SREBP improved skin wound healing under homeostatic and chronic inflammatory conditions. Our results identify a function and mechanism of action for SREBPs in augmenting TNF-induced macrophage activation and inflammation and open therapeutic avenues for promoting wound repair.


Assuntos
Inflamação/metabolismo , Macrófagos/imunologia , Peritonite/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Dermatopatias/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Epigenômica , Feminino , Humanos , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , RNA Interferente Pequeno/genética , Receptores Acoplados a Proteínas G/genética , Transcriptoma , Cicatrização
3.
Nat Immunol ; 16(8): 838-849, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26147685

RESUMO

Interferon-γ (IFN-γ) primes macrophages for enhanced microbial killing and inflammatory activation by Toll-like receptors (TLRs), but little is known about the regulation of cell metabolism or mRNA translation during this priming. We found that IFN-γ regulated the metabolism and mRNA translation of human macrophages by targeting the kinases mTORC1 and MNK, both of which converge on the selective regulator of translation initiation eIF4E. Physiological downregulation of mTORC1 by IFN-γ was associated with autophagy and translational suppression of repressors of inflammation such as HES1. Genome-wide ribosome profiling in TLR2-stimulated macrophages showed that IFN-γ selectively modulated the macrophage translatome to promote inflammation, further reprogram metabolic pathways and modulate protein synthesis. These results show that IFN-γ-mediated metabolic reprogramming and translational regulation are key components of classical inflammatory macrophage activation.


Assuntos
Interferon gama/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Biossíntese de Proteínas/imunologia , RNA Mensageiro/imunologia , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Células Cultivadas , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/imunologia , Fator de Iniciação 4E em Eucariotos/metabolismo , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Humanos , Interferon gama/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , MicroRNAs/genética , Microscopia de Fluorescência , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Complexos Multiproteicos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia , Serina-Treonina Quinases TOR/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo , Fatores de Transcrição HES-1
4.
Immunity ; 47(2): 235-250.e4, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813657

RESUMO

Mechanisms by which interferon (IFN)-γ activates genes to promote macrophage activation are well studied, but little is known about mechanisms and functions of IFN-γ-mediated gene repression. We used an integrated transcriptomic and epigenomic approach to analyze chromatin accessibility, histone modifications, transcription-factor binding, and gene expression in IFN-γ-primed human macrophages. IFN-γ suppressed basal expression of genes corresponding to an "M2"-like homeostatic and reparative phenotype. IFN-γ repressed genes by suppressing the function of enhancers enriched for binding by transcription factor MAF. Mechanistically, IFN-γ disassembled a subset of enhancers by inducing coordinate suppression of binding by MAF, lineage-determining transcription factors, and chromatin accessibility. Genes associated with MAF-binding enhancers were suppressed in macrophages isolated from rheumatoid-arthritis patients, revealing a disease-associated signature of IFN-γ-mediated repression. These results identify enhancer inactivation and disassembly as a mechanism of IFN-γ-mediated gene repression and reveal that MAF regulates the macrophage enhancer landscape and is suppressed by IFN-γ to augment macrophage activation.


Assuntos
Artrite Reumatoide/imunologia , Montagem e Desmontagem da Cromatina , Interferon gama/metabolismo , Macrófagos/imunologia , Proteínas Proto-Oncogênicas c-maf/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Citocinas/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos , Ligação Proteica , Proteínas Proto-Oncogênicas c-maf/genética , Transcriptoma
5.
Immunity ; 47(1): 66-79.e5, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28723554

RESUMO

Hypoxia augments inflammatory responses and osteoclastogenesis by incompletely understood mechanisms. We identified COMMD1 as a cell-intrinsic negative regulator of osteoclastogenesis that is suppressed by hypoxia. In human macrophages, COMMD1 restrained induction of NF-κB signaling and a transcription factor E2F1-dependent metabolic pathway by the cytokine RANKL. Downregulation of COMMD1 protein expression by hypoxia augmented RANKL-induced expression of inflammatory and E2F1 target genes and downstream osteoclastogenesis. E2F1 targets included glycolysis and metabolic genes including CKB that enabled cells to meet metabolic demands in challenging environments, as well as inflammatory cytokine-driven target genes. Expression quantitative trait locus analysis linked increased COMMD1 expression with decreased bone erosion in rheumatoid arthritis. Myeloid deletion of Commd1 resulted in increased osteoclastogenesis in arthritis and inflammatory osteolysis models. These results identify COMMD1 and an E2F-metabolic pathway as key regulators of osteoclastogenic responses under pathological inflammatory conditions and provide a mechanism by which hypoxia augments inflammation and bone destruction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Artrite Reumatoide/imunologia , Macrófagos/imunologia , Osteogênese/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Fator de Transcrição E2F1/metabolismo , Feminino , Humanos , Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , NF-kappa B/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais
7.
Immunity ; 39(3): 454-69, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-24012417

RESUMO

Synergistic activation of inflammatory cytokine genes by interferon-γ (IFN-γ) and Toll-like receptor (TLR) signaling is important for innate immunity and inflammatory disease pathogenesis. Enhancement of TLR signaling, a previously proposed mechanism, is insufficient to explain strong synergistic activation of cytokine production in human macrophages. Rather, we found that IFN-γ induced sustained occupancy of transcription factors STAT1, IRF-1, and associated histone acetylation at promoters and enhancers at the TNF, IL6, and IL12B loci. This priming of chromatin did not activate transcription but greatly increased and prolonged recruitment of TLR4-induced transcription factors and RNA polymerase II to gene promoters and enhancers. Priming sensitized cytokine transcription to suppression by Jak inhibitors. Genome-wide analysis revealed pervasive priming of regulatory elements by IFN-γ and linked coordinate priming of promoters and enhancers with synergistic induction of transcription. Our results provide a synergy mechanism whereby IFN-γ creates a primed chromatin environment to augment TLR-induced gene transcription.


Assuntos
Montagem e Desmontagem da Cromatina , Citocinas/metabolismo , Interferon gama/metabolismo , Receptores Toll-Like/metabolismo , Acetilação , Células Cultivadas , Ativação Enzimática , Histonas/metabolismo , Humanos , Fator Regulador 1 de Interferon/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Interleucina-6/metabolismo , Janus Quinases/antagonistas & inibidores , Macrófagos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase II/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Transcrição Gênica , Fatores de Necrose Tumoral/metabolismo
8.
Nature ; 495(7439): 98-102, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23389444

RESUMO

Adult stem cells reside in specialized niches where they receive environmental cues to maintain tissue homeostasis. In mammals, the stem cell niche within hair follicles is home to epithelial hair follicle stem cells and melanocyte stem cells, which sustain cyclical bouts of hair regeneration and pigmentation. To generate pigmented hairs, synchrony is achieved such that upon initiation of a new hair cycle, stem cells of each type activate lineage commitment. Dissecting the inter-stem-cell crosstalk governing this intricate coordination has been difficult, because mutations affecting one lineage often affect the other. Here we identify transcription factor NFIB as an unanticipated coordinator of stem cell behaviour. Hair follicle stem-cell-specific conditional targeting of Nfib in mice uncouples stem cell synchrony. Remarkably, this happens not by perturbing hair cycle and follicle architecture, but rather by promoting melanocyte stem cell proliferation and differentiation. The early production of melanin is restricted to melanocyte stem cells at the niche base. Melanocyte stem cells more distant from the dermal papilla are unscathed, thereby preventing hair greying typical of melanocyte stem cell differentiation mutants. Furthermore, we pinpoint KIT-ligand as a dermal papilla signal promoting melanocyte stem cell differentiation. Additionally, through chromatin-immunoprecipitation with high-throughput-sequencing and transcriptional profiling, we identify endothelin 2 (Edn2) as an NFIB target aberrantly activated in NFIB-deficient hair follicle stem cells. Ectopically induced Edn2 recapitulates NFIB-deficient phenotypes in wild-type mice. Conversely, endothelin receptor antagonists and/or KIT blocking antibodies prevent precocious melanocyte stem cell differentiation in the NFIB-deficient niche. Our findings reveal how melanocyte and hair follicle stem cell behaviours maintain reliance upon cooperative factors within the niche, and how this can be uncoupled in injury, stress and disease states.


Assuntos
Folículo Piloso/citologia , Melanócitos/citologia , Fatores de Transcrição NFI/metabolismo , Nicho de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Apoptose , Diferenciação Celular , Proliferação de Células , Imunoprecipitação da Cromatina , Endotelina-2/genética , Endotelina-2/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Cabelo/citologia , Cabelo/crescimento & desenvolvimento , Cor de Cabelo , Folículo Piloso/metabolismo , Melanócitos/metabolismo , Camundongos , Fatores de Transcrição NFI/deficiência , Fatores de Transcrição NFI/genética , Análise de Sequência , Fator de Células-Tronco/metabolismo
9.
PLoS Genet ; 11(4): e1005174, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25894978

RESUMO

While the importance of gene enhancers in transcriptional regulation is well established, the mechanisms and the protein factors that determine enhancers activity have only recently begun to be unravelled. Recent studies have shown that progesterone receptor (PR) binds regions that display typical features of gene enhancers. Here, we show by ChIP-seq experiments that the chromatin remodeler CHD8 mostly binds promoters under proliferation conditions. However, upon progestin stimulation, CHD8 re-localizes to PR enhancers also enriched in p300 and H3K4me1. Consistently, CHD8 depletion severely impairs progestin-dependent gene regulation. CHD8 binding is PR-dependent but independent of the pioneering factor FOXA1. The SWI/SNF chromatin-remodelling complex is required for PR-dependent gene activation. Interestingly, we show that CHD8 interacts with the SWI/SNF complex and that depletion of BRG1 and BRM, the ATPases of SWI/SNF complex, impairs CHD8 recruitment. We also show that CHD8 is not required for H3K27 acetylation, but contributes to increase accessibility of the enhancer to DNaseI. Furthermore, CHD8 was required for RNAPII recruiting to the enhancers and for transcription of enhancer-derived RNAs (eRNAs). Taken together our data demonstrate that CHD8 is involved in late stages of PR enhancers activation.


Assuntos
Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Receptores de Progesterona/genética , Fatores de Transcrição/genética , Transcrição Gênica , Acetilação , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase II/genética , Receptores de Progesterona/metabolismo , Fatores de Transcrição/metabolismo
10.
PLoS Genet ; 10(9): e1004566, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25188243

RESUMO

Overexpression of the histone methyltransferase MMSET in t(4;14)+ multiple myeloma patients is believed to be the driving factor in the pathogenesis of this subtype of myeloma. MMSET catalyzes dimethylation of lysine 36 on histone H3 (H3K36me2), and its overexpression causes a global increase in H3K36me2, redistributing this mark in a broad, elevated level across the genome. Here, we demonstrate that an increased level of MMSET also induces a global reduction of lysine 27 trimethylation on histone H3 (H3K27me3). Despite the net decrease in H3K27 methylation, specific genomic loci exhibit enhanced recruitment of the EZH2 histone methyltransferase and become hypermethylated on this residue. These effects likely contribute to the myeloma phenotype since MMSET-overexpressing cells displayed increased sensitivity to EZH2 inhibition. Furthermore, we demonstrate that such MMSET-mediated epigenetic changes require a number of functional domains within the protein, including PHD domains that mediate MMSET recruitment to chromatin. In vivo, targeting of MMSET by an inducible shRNA reversed histone methylation changes and led to regression of established tumors in athymic mice. Together, our work elucidates previously unrecognized interplay between MMSET and EZH2 in myeloma oncogenesis and identifies domains to be considered when designing inhibitors of MMSET function.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Mieloma Múltiplo/genética , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica/genética , Animais , Linhagem Celular , Transformação Celular Neoplásica/genética , Cromatina/genética , Feminino , Células HEK293 , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Humanos , Lisina/genética , Camundongos , Camundongos Endogâmicos C57BL , Mieloma Múltiplo/metabolismo , Complexo Repressor Polycomb 2/genética , RNA Interferente Pequeno/genética
11.
Genome Res ; 23(8): 1295-306, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23554462

RESUMO

Genome-wide binding assays can determine where individual transcription factors bind in the genome. However, these factors rarely bind chromatin alone, but instead frequently bind to cis-regulatory elements (CREs) together with other factors thus forming protein complexes. Currently there are no integrative analytical approaches that can predict which complexes are formed on chromatin. Here, we describe a computational methodology to systematically capture protein complexes and infer their impact on gene expression. We applied our method to three human cell types, identified thousands of CREs, inferred known and undescribed complexes recruited to these CREs, and determined the role of the complexes as activators or repressors. Importantly, we found that the predicted complexes have a higher number of physical interactions between their members than expected by chance. Our work provides a mechanism for developing hypotheses about gene regulation via binding partners, and deciphering the interplay between combinatorial binding and gene expression.


Assuntos
Cromatina/metabolismo , Fatores de Transcrição/metabolismo , Imunoprecipitação da Cromatina , Análise por Conglomerados , Biologia Computacional , Regulação da Expressão Gênica , Genoma Humano , Humanos , Modelos Genéticos , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de DNA
12.
J Immunol ; 193(5): 2373-83, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25057003

RESUMO

Mesenchymal stromal cells have emerged as powerful modulators of the immune system. In this study, we explored how the human macrophage response to TNF is regulated by human synovial fibroblasts, the representative stromal cell type in the synovial lining of joints that become activated during inflammatory arthritis. We found that synovial fibroblasts strongly suppressed TNF-mediated induction of an IFN-ß autocrine loop and downstream expression of IFN-stimulated genes (ISGs), including chemokines CXCL9 and CXCL10 that are characteristic of classical macrophage activation. TNF induced the production of soluble synovial fibroblast factors that suppressed the macrophage production of IFN-ß, and cooperated with TNF to limit the responsiveness of macrophages to IFN-ß by suppressing activation of Jak-STAT signaling. Genome-wide transcriptome analysis showed that cocultured synovial fibroblasts modulate the expression of approximately one third of TNF-regulated genes in macrophages, including genes in pathways important for macrophage survival and polarization toward an alternatively activated phenotype. Pathway analysis revealed that gene expression programs regulated by synovial fibroblasts in our coculture system were also regulated in rheumatoid arthritis synovial macrophages, suggesting that these fibroblast-mediated changes may contribute to rheumatoid arthritis pathogenesis. This work furthers our understanding of the interplay between innate immune and stromal cells during an inflammatory response, one that is particularly relevant to inflammatory arthritis. Our findings also identify modulation of macrophage phenotype as a new function for synovial fibroblasts that may prove to be a contributing factor in arthritis pathogenesis.


Assuntos
Artrite Reumatoide/imunologia , Fibroblastos/imunologia , Macrófagos/imunologia , Transdução de Sinais/imunologia , Membrana Sinovial/imunologia , Fator de Necrose Tumoral alfa/imunologia , Artrite Reumatoide/patologia , Comunicação Autócrina/imunologia , Células Cultivadas , Quimiocina CXCL10/imunologia , Quimiocina CXCL9/imunologia , Técnicas de Cocultura , Feminino , Fibroblastos/patologia , Estudo de Associação Genômica Ampla , Humanos , Interferon beta/imunologia , Janus Quinases/imunologia , Macrófagos/patologia , Masculino , Fatores de Transcrição STAT/imunologia , Membrana Sinovial/patologia , Transcrição Gênica/imunologia
13.
Bone Res ; 12(1): 48, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191742

RESUMO

Osteoclasts are multinucleated bone-resorbing cells, and their formation is tightly regulated to prevent excessive bone loss. However, the mechanisms by which osteoclast formation is restricted remain incompletely determined. Here, we found that sterol regulatory element binding protein 2 (SREBP2) functions as a negative regulator of osteoclast formation and inflammatory bone loss. Cholesterols and SREBP2, a key transcription factor for cholesterol biosynthesis, increased in the late phase of osteoclastogenesis. The ablation of SREBP2 in myeloid cells resulted in increased in vivo and in vitro osteoclastogenesis, leading to low bone mass. Moreover, deletion of SREBP2 accelerated inflammatory bone destruction in murine inflammatory osteolysis and arthritis models. SREBP2-mediated regulation of osteoclastogenesis is independent of its canonical function in cholesterol biosynthesis but is mediated, in part, by its downstream target, interferon regulatory factor 7 (IRF7). Taken together, our study highlights a previously undescribed role of the SREBP2-IRF7 regulatory circuit as a negative feedback loop in osteoclast differentiation and represents a novel mechanism to restrain pathological bone destruction.


Assuntos
Diferenciação Celular , Fator Regulador 7 de Interferon , Osteoclastos , Proteína de Ligação a Elemento Regulador de Esterol 2 , Animais , Osteoclastos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Camundongos , Fator Regulador 7 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos Endogâmicos C57BL , Osteogênese/fisiologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Reabsorção Óssea/genética , Camundongos Knockout , Colesterol/metabolismo
14.
J Proteome Res ; 12(4): 1591-603, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23418717

RESUMO

A naturally occurring benzofuran derivative, Ebenfuran III (Eb III), was investigated for its antiproliferative effects using the DU-145 prostate cell line. Eb III was isolated from Onobrychis ebenoides of the Leguminosae family, a plant endemic in Central and Southern Greece. We have previously reported that Eb III exerts significant cytotoxic effects on certain cancer cell lines. This effect is thought to occur via the isoprenyl moiety at the C-5 position of the molecule. The study aim was to gain a deeper understanding of the pharmacological effect of Eb III on DU-145 cell death at the translational level using a relative quantitative and temporal proteomics approach. Proteins extracted from the cell pellets were subjected to solution phase trypsin proteolysis followed by iTRAQ-labeling. The labeled tryptic peptide extracts were then fractionated using strong cation exchange chromatography and the fractions were analyzed by nanoflow reverse phase ultraperformance liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry analysis using a hybrid QqTOF platform. Using this approach, we compared the expression levels of 1360 proteins analyzed at ≤ 1% global protein false discovery rate (FDR), commonly present in untreated (control, vehicle only) and Eb III-treated cells at the different exposure time points. Through the iterative use of Ingenuity Pathway Analysis with hierarchical clustering of protein expression patterns, followed by bibliographic research, the temporal regulation of the Calpain-1, ERK2, PAR-4, RAB-7, and Bap31 proteins were identified as potential nodes of multipathway convergence to Eb III induced DU-145 cell death. These proteins were further verified with Western blot analysis. This gel-free, quantitative 2DLC-MS/MS proteomics method effectively captured novel modulated proteins in the DU-145 cell line as a response to Eb III treatment. This approach also provided greater insight to the multifocal and combinatorial signaling pathways implicated in Eb III-induced cell death.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Benzofuranos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Proteínas/metabolismo , Resorcinóis/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Calpaína/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia de Fase Reversa/métodos , Análise por Conglomerados , Humanos , Masculino , Proteínas de Membrana/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Neoplasias da Próstata/patologia , Proteínas/análise , Espectrometria de Massas em Tandem/métodos , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
15.
Front Cell Dev Biol ; 10: 920683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060812

RESUMO

Osteoclasts are bone-resorbing cells that undergo extensive changes in morphology throughout their differentiation. Altered osteoclast differentiation and activity lead to changes in pathological bone resorption. The mammalian target of rapamycin (mTOR) is a kinase, and aberrant mTOR complex 1 (mTORC1) signaling is associated with altered bone homeostasis. The activation of mTORC1 is biphasically regulated during osteoclastogenesis; however, the mechanism behind mTORC1-mediated regulation of osteoclastogenesis and bone resorption is incompletely understood. Here, we found that MYC coordinates the dynamic regulation of mTORC1 activation during osteoclastogenesis. MYC-deficiency blocked the early activation of mTORC1 and also reversed the decreased activity of mTORC1 at the late stage of osteoclastogenesis. The suppression of mTORC1 activity by rapamycin in mature osteoclasts enhances bone resorption activity despite the indispensable role of high mTORC1 activation in osteoclast formation in both mouse and human cells. Mechanistically, MYC induces Growth arrest and DNA damage-inducible protein (GADD34) expression and suppresses mTORC1 activity at the late phase of osteoclastogenesis. Taken together, our findings identify a MYC-GADD34 axis as an upstream regulator of dynamic mTORC1 activation in osteoclastogenesis and highlight the interplay between MYC and mTORC1 pathways in determining osteoclast activity.

16.
Arthritis Rheumatol ; 74(9): 1544-1555, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35438841

RESUMO

OBJECTIVE: Age-associated/autoimmune B cells (ABCs) are an emerging B cell subset with aberrant expansion in systemic lupus erythematosus. ABC generation and differentiation exhibit marked sexual dimorphism, and Toll-like receptor 7 (TLR-7) engagement is a key contributor to these sex differences. ABC generation is also controlled by interleukin-21 (IL-21) and its interplay with interferon-γ and IL-4. This study was undertaken to investigate whether IL-13 receptor α1 (IL-13Rα1), an X-linked receptor that transmits IL-4/IL-13 signals, regulates ABCs and lupus pathogenesis. METHODS: Mice lacking DEF-6 and switch-associated protein 70 (double-knockout [DKO]), which preferentially develop lupus in females, were crossed with IL-13Rα1-knockout mice. IL-13Rα1-knockout male mice were also crossed with Y chromosome autoimmune accelerator (Yaa) DKO mice, which overexpress TLR-7 and develop severe disease. ABCs were assessed using flow cytometry and RNA-Seq. Lupus pathogenesis was evaluated using serologic and histologic analyses. RESULTS: ABCs expressed higher levels of IL-13Rα1 than follicular B cells. The absence of IL-13Rα1 in either DKO female mice or Yaa DKO male mice decreased the accumulation of ABCs, the differentiation of ABCs into plasmablasts, and autoantibody production. Lack of IL-13Rα1 also prolonged survival and delayed the development of tissue inflammation. IL-13Rα1 deficiency diminished in vitro generation of ABCs, an effect that, surprisingly, could be observed in response to IL-21 alone. RNA-Seq revealed that ABCs lacking IL-13Rα1 down-regulated some histologic characteristics of B cells but up-regulated myeloid markers and proinflammatory mediators. CONCLUSION: Our findings indicate a novel role for IL-13Rα1 in controlling ABC generation and differentiation, suggesting that IL-13Rα1 contributes to these effects by regulating a subset of IL-21-mediated signaling events. These results also suggest that X-linked genes besides TLR7 participate in the regulation of ABCs in lupus.


Assuntos
Interleucina-13 , Lúpus Eritematoso Sistêmico , Receptores de Interleucina-13 , Animais , Feminino , Interleucina-13/metabolismo , Subunidade alfa1 de Receptor de Interleucina-13/genética , Interleucina-4 , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Camundongos , Camundongos Knockout , Receptores de Interleucina-13/genética , Receptor 7 Toll-Like
17.
BMC Bioinformatics ; 12: 277, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21736739

RESUMO

BACKGROUND: Chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq), enables unbiased and genome-wide mapping of protein-DNA interactions and epigenetic marks. The first step in ChIP-seq data analysis involves the identification of peaks (i.e., genomic locations with high density of mapped sequence reads). The next step consists of interpreting the biological meaning of the peaks through their association with known genes, pathways, regulatory elements, and integration with other experiments. Although several programs have been published for the analysis of ChIP-seq data, they often focus on the peak detection step and are usually not well suited for thorough, integrative analysis of the detected peaks. RESULTS: To address the peak interpretation challenge, we have developed ChIPseeqer, an integrative, comprehensive, fast and user-friendly computational framework for in-depth analysis of ChIP-seq datasets. The novelty of our approach is the capability to combine several computational tools in order to create easily customized workflows that can be adapted to the user's needs and objectives. In this paper, we describe the main components of the ChIPseeqer framework, and also demonstrate the utility and diversity of the analyses offered, by analyzing a published ChIP-seq dataset. CONCLUSIONS: ChIPseeqer facilitates ChIP-seq data analysis by offering a flexible and powerful set of computational tools that can be used in combination with one another. The framework is freely available as a user-friendly GUI application, but all programs are also executable from the command line, thus providing flexibility and automatability for advanced users.


Assuntos
Imunoprecipitação da Cromatina/métodos , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Elementos Facilitadores Genéticos , Código das Histonas , Humanos , Células Jurkat , Proteína Proto-Oncogênica c-ets-1/metabolismo , Fluxo de Trabalho
18.
BMC Bioinformatics ; 12: 308, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21798033

RESUMO

BACKGROUND: The steps of a high-throughput proteomics experiment include the separation, differential expression and mass spectrometry-based identification of proteins. However, the last and more challenging step is inferring the biological role of the identified proteins through their association with interaction networks, biological pathways, analysis of the effect of post-translational modifications, and other protein-related information. RESULTS: In this paper, we present an integrative visualization methodology that allows combining experimentally produced proteomic features with protein meta-features, typically coming from meta-analysis tools and databases, in synthetic Proteomic Feature Maps. Using three proteomics analysis scenarios, we show that the proposed visualization approach is effective in filtering, navigating and interacting with the proteomics data in order to address visually challenging biological questions. The novelty of our approach lies in the ease of integration of any user-defined proteomic features in easy-to-comprehend visual representations that resemble the familiar 2D-gel images, and can be adapted to the user's needs. The main capabilities of the developed VIP software, which implements the presented visualization methodology, are also highlighted and discussed. CONCLUSIONS: By using this visualization and the associated VIP software, researchers can explore a complex heterogeneous proteomics dataset from different perspectives in order to address visually important biological queries and formulate new hypotheses for further investigation. VIP is freely available at http://pelopas.uop.gr/~egian/VIP/index.html.


Assuntos
Proteômica/métodos , Software , Espectrometria de Massas/métodos , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas/química
19.
Cell Rep ; 35(11): 109264, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133930

RESUMO

MYC activates different metabolic programs in a cell-type- and cell-status-dependent manner. However, the role of MYC in inflammatory macrophages has not yet been determined. Metabolic and molecular analyses reveal that MYC, but not hypoxia inducible factor 1 (HIF1), is involved in enhancing early glycolytic flux during inflammatory macrophage polarization. Ablation of MYC decreases lactate production by regulating lactate dehydrogenase (LDH) activity and causes increased inflammatory cytokines by regulating interferon regulatory factor 4 (IRF4) in response to lipopolysaccharide. Moreover, myeloid-specific deletion of MYC and pharmacological inhibition of the MYC/LDH axis enhance inflammation and the bacterial clearance in vivo. These results elucidate the potential role of the MYC/LDH/IRF4 axis in inflammatory macrophages by connecting early glycolysis with inflammatory responses and suggest that modulating early glycolytic flux mediated by the MYC/LDH axis can be used to open avenues for the therapeutic modulation of macrophage polarization to fight against bacterial infection.


Assuntos
Glicólise , Inflamação/metabolismo , Inflamação/patologia , Fatores Reguladores de Interferon/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Bactérias/metabolismo , Citocinas/biossíntese , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imunidade Inata , Mediadores da Inflamação/metabolismo , Ácido Láctico/metabolismo , Lipopolissacarídeos , Masculino , Camundongos Knockout , Proteínas Proto-Oncogênicas c-myc/deficiência
20.
J Biomed Inform ; 42(4): 644-53, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19535004

RESUMO

The different steps of a proteomics analysis workflow generate a plethora of features for each extracted proteomic object (a protein spot in 2D gel electrophoresis (2-DE), or a peptide peak in liquid chromatography-mass spectrometry (LC-MS) analysis). Yet, the joint visualization of multiple object features on 2D gel-like maps is rather limited in currently available proteomics software packages. We introduce a new, simple, and intuitive visualization method that utilizes spheres to represent proteomic objects on proteomic feature maps, and exploits the spheres size and color to provide simultaneous visualization of user-selected feature pairs. Our contribution, a unified and flexible visualization mechanism that can be easily applied at any stage of a 2-DE or a LC-MS based differential proteomics study, is demonstrated and discussed using five representative scenarios. The joint visualization of proteomic object features and their spatial distribution is a powerful tool for inspecting and comparing the proteomics analysis results, attracting the users attention to useful information, such as differential expression trends and patterns, and even assisting in the evaluation and refinement of a proteomics experiment.


Assuntos
Gráficos por Computador , Proteômica/métodos , Software , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa