Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genetica ; 150(6): 343-353, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36242716

RESUMO

Quantitative genetics aims at untangling the genetic and environmental effects on phenotypic variation. Trait heritability, which summarizes the relative importance of genetic effects, is estimated at the intraspecific level, but theory predicts that heritability could influence long-term evolution of quantitative traits. The phylogenetic signal concept bears resemblance to heritability and it has often been called species-level heritability. Under certain conditions, such as trait neutrality or contribution to phylogenesis, within-species heritability and between-species phylogenetic signal should be correlated. Here, we investigate the potential relationship between these two concepts by examining the evolution of multiple morphological traits for which heritability has been estimated in Drosophila melanogaster. Specifically, we analysed 42 morphological traits in both sexes on a phylogeny inferred from 22 nuclear genes for nine species of the melanogaster subgroup. We used Pagel's λ as a measurement of phylogenetic signal because it is the least influenced by the number of analysed taxa. Pigmentation traits showed the strongest concordance with the phylogeny, but no correlation was found between phylogenetic signal and heritability estimates mined from the literature. We obtained data for multiple climatic variables inferred from the geographical distribution of each species. Phylogenetic regression of quantitative traits on climatic variables showed a significantly positive correlation with heritability. Convergent selection, the response to which depends on the trait heritability, may have led to the null association between phylogenetic signal and heritability for morphological traits in Drosophila. We discuss the possible causes of discrepancy between both statistics and caution against their confusion in evolutionary biology.


Assuntos
Drosophila melanogaster , Drosophila , Feminino , Masculino , Animais , Drosophila melanogaster/genética , Filogenia , Fenótipo , Drosophila/genética , Pigmentação/genética
2.
Proc Natl Acad Sci U S A ; 113(17): 4771-6, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27044093

RESUMO

Recurrent specialization on similar host plants offers a unique opportunity to unravel the evolutionary and genetic mechanisms underlying dietary shifts. Recent studies have focused on ecological races belonging to the same species, but it is hard in many cases to untangle the role of adaptive introgression versus distinct mutations in facilitating recurrent evolution. We discovered on the island of Mayotte a population of the generalist fly Drosophila yakuba that is strictly associated with noni (Morinda citrifolia). This case strongly resembles Drosophila sechellia, a genetically isolated insular relative of D. yakuba whose intensely studied specialization on toxic noni fruits has always been considered a unique event in insect evolution. Experiments revealed that unlike mainland D. yakuba strains, Mayotte flies showed strong olfactory attraction and significant toxin tolerance to noni. Island females strongly discriminated against mainland males, suggesting that dietary adaptation has been accompanied by partial reproductive isolation. Population genomic analysis indicated a recent colonization (∼29 kya), at a time when year-round noni fruits may have presented a predictable resource on the small island, with ongoing migration after colonization. This relatively recent time scale allowed us to search for putatively adaptive loci based on genetic variation. Strong signals of genetic differentiation were found for several detoxification genes, including a major toxin tolerance locus in D. sechellia Our results suggest that recurrent evolution on a toxic resource can involve similar historical events and common genetic bases, and they establish an important genetic system for the study of early stages of ecological specialization and speciation.


Assuntos
Drosophila/genética , Frutas/toxicidade , Animais , Ilhas , Morinda/toxicidade , Olfato/genética
3.
PLoS Genet ; 7(10): e1002314, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21998598

RESUMO

Morphological consistency in metazoans is remarkable given the pervasive occurrence of genetic variation, environmental effects, and developmental noise. Developmental stability, the ability to reduce developmental noise, is a fundamental property of multicellular organisms, yet its genetic bases remains elusive. Imperfect bilateral symmetry, or fluctuating asymmetry, is commonly used to estimate developmental stability. We observed that Drosophila melanogaster overexpressing Cyclin G (CycG) exhibit wing asymmetry clearly detectable by sight. Quantification of wing size and shape using geometric morphometrics reveals that this asymmetry is a genuine-but extreme-fluctuating asymmetry. Overexpression of CycG indeed leads to a 40-fold increase of wing fluctuating asymmetry, which is an unprecedented effect, for any organ and in any animal model, either in wild populations or mutants. This asymmetry effect is not restricted to wings, since femur length is affected as well. Inactivating CycG by RNAi also induces fluctuating asymmetry but to a lesser extent. Investigating the cellular bases of the phenotypic effects of CycG deregulation, we found that misregulation of cell size is predominant in asymmetric flies. In particular, the tight negative correlation between cell size and cell number observed in wild-type flies is impaired when CycG is upregulated. Our results highlight the role of CycG in the control of developmental stability in D. melanogaster. Furthermore, they show that wing developmental stability is normally ensured via compensatory processes between cell growth and cell proliferation. We discuss the possible role of CycG as a hub in a genetic network that controls developmental stability.


Assuntos
Ciclina G/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Asas de Animais/crescimento & desenvolvimento , Animais , Sequência de Bases , Padronização Corporal/genética , Ciclina G/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Variação Genética , Genótipo , Dados de Sequência Molecular , Fenótipo , Interferência de RNA , Asas de Animais/anatomia & histologia
4.
J Evol Biol ; 26(4): 912-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23496332

RESUMO

Sexual selection can drive rapid evolutionary change in reproductive behaviour, morphology and physiology. This often leads to the evolution of sexual dimorphism, and continued exaggerated expression of dimorphic sexual characteristics, although a variety of other alternative selection scenarios exist. Here, we examined the evolutionary significance of a rapidly evolving, sexually dimorphic trait, sex comb tooth number, in two Drosophila species. The presence of the sex comb in both D. melanogaster and D. pseudoobscura is known to be positively related to mating success, although little is yet known about the sexually selected benefits of sex comb structure. In this study, we used experimental evolution to test the idea that enhancing or eliminating sexual selection would lead to variation in sex comb tooth number. However, the results showed no effect of either enforced monogamy or elevated promiscuity on this trait. We discuss several hypotheses to explain the lack of divergence, focussing on sexually antagonistic coevolution, stabilizing selection via species recognition and nonlinear selection. We discuss how these are important, but relatively ignored, alternatives in understanding the evolution of rapidly evolving sexually dimorphic traits.


Assuntos
Estruturas Animais/anatomia & histologia , Evolução Biológica , Drosophila melanogaster/fisiologia , Seleção Genética , Caracteres Sexuais , Estruturas Animais/fisiologia , Animais , Tamanho Corporal , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Feminino , Aptidão Genética , Masculino , Fenótipo , Reprodução , Comportamento Sexual Animal
5.
Syst Biol ; 59(3): 245-61, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20525633

RESUMO

The relationship between morphometrics and phylogenetic analysis has long been controversial. Here we propose an approach that is based on mapping morphometric traits onto phylogenies derived from other data and thus avoids the pitfalls encountered by previous studies. This method treats shape as a single, multidimensional character. We propose a test for the presence of a phylogenetic signal in morphometric data, which simulates the null hypothesis of the complete absence of phylogenetic structure by permutation of the shape data among the terminal taxa. We also propose 2 measures of the fit of morphometric data to the phylogeny that are direct extensions of the consistency index and retention index used in traditional cladistics. We apply these methods to a small study of the evolution of wing shape in the Drosophila melanogaster subgroup, for which a very strongly supported phylogeny is available. This case study reveals a significant phylogenetic signal and a relatively low degree of homoplasy. Despite the low homoplasy, the shortest tree computed from landmark data on wing shape is inconsistent with the well-supported phylogenetic tree from molecular data, underscoring that morphometric data may not provide reliable information for inferring phylogeny.


Assuntos
Biometria/métodos , Pesos e Medidas Corporais/métodos , Classificação/métodos , Drosophila/anatomia & histologia , Filogenia , Asas de Animais/anatomia & histologia , Animais , Drosophila/genética
6.
BMC Evol Biol ; 9: 110, 2009 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-19457235

RESUMO

BACKGROUND: Sexual dimorphism of body size has been the subject of numerous studies, but few have examined sexual shape dimorphism (SShD) and its evolution. Allometry, the shape change associated with size variation, has been suggested to be a main component of SShD. Yet little is known about the relative importance of the allometric and non-allometric components for the evolution of SShD. RESULTS: We investigated sexual dimorphism in wing shape in the nine species of the Drosophila melanogaster subgroup. We used geometric morphometrics to characterise wing shape and found significant SShD in all nine species. The amount of shape difference and the diversity of the shape changes evolved across the group. However, mapping the divergence of SShD onto the phylogeny of the Drosophila melanogaster subgroup indicated that there is little phylogenetic signal. Finally, allometry accounted for a substantial part of SShD, but did not explain the bulk of evolutionary divergence in SShD because allometry itself was found to be evolutionarily plastic. CONCLUSION: SShD in the Drosophila wing can evolve rapidly and therefore shows only weak phylogenetic structure. The variable contribution of allometric and non-allometric components to the evolutionary divergence of SShD and the evolutionary plasticity of allometry suggest that SShD and allometry are influenced by a complex interaction of processes.


Assuntos
Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Evolução Molecular , Caracteres Sexuais , Asas de Animais/anatomia & histologia , Análise de Variância , Animais , Feminino , Masculino , Modelos Estatísticos , Filogenia , Análise de Componente Principal
7.
Fly (Austin) ; 6(4): 298-302, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23222006

RESUMO

Thirteen drosophilid species belonging to seven genera and two subfamilies are reported from three coral islands (namely Europa, Juan de Nova and Glorioso) that belong to the Scattered Islands in the Indian Ocean. Five species are cosmopolitan and five are African. Three are endemic to the insular Western Indian Ocean, including a presumably new Scaptodrosophila species. On the island of Juan de Nova, most captured flies had pollinia attached to the bases of their proboscis. DNA analysis using the rbcl gene revealed that these pollinia belong to the genus Leptadenia (Apocynaceae), of which a single species L. madagascariensis, endemic in Madagascar and Comoros, is present in this island. This is the first reported association between this plant and drosophilids.


Assuntos
Apocynaceae , Drosophilidae/fisiologia , Animais , Comportamento Animal , DNA de Plantas/química , Drosophilidae/classificação , Pólen/classificação , Pólen/genética , Polinização , Ribulose-Bifosfato Carboxilase/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa