Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 155(7): 1446-8, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24360269

RESUMO

Hsaio and colleagues link gut microbes to autism spectrum disorders (ASD) in a mouse model. They show that ASD symptoms are triggered by compositional and structural shifts of microbes and associated metabolites, but symptoms are relieved by a Bacteroides fragilis probiotic. Thus probiotics may provide therapeutic strategies for neurodevelopmental disorders.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/microbiologia , Trato Gastrointestinal/microbiologia , Animais , Feminino , Humanos
2.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305096

RESUMO

AIMS: Gastrointestinal disease is a leading cause of morbidity in bottlenose dolphins (Tursiops truncatus) under managed care. Fecal microbiota transplantation (FMT) holds promise as a therapeutic tool to restore gut microbiota without antibiotic use. This prospective clinical study aimed to develop a screening protocol for FMT donors to ensure safety, determine an effective FMT administration protocol for managed dolphins, and evaluate the efficacy of FMTs in four recipient dolphins. METHODS AND RESULTS: Comprehensive health monitoring was performed on donor and recipient dolphins. Fecal samples were collected before, during, and after FMT therapy. Screening of donor and recipient fecal samples was accomplished by in-house and reference lab diagnostic tests. Shotgun metagenomics was used for sequencing. Following FMT treatment, all four recipient communities experienced engraftment of novel microbial species from donor communities. Engraftment coincided with resolution of clinical signs and a sustained increase in alpha diversity. CONCLUSION: The donor screening protocol proved to be safe in this study and no adverse effects were observed in four recipient dolphins. Treatment coincided with improvement in clinical signs.


Assuntos
Golfinho Nariz-de-Garrafa , Microbioma Gastrointestinal , Animais , Transplante de Microbiota Fecal/métodos , Estudos Prospectivos , Fezes , Resultado do Tratamento
3.
Artigo em Inglês | MEDLINE | ID: mdl-38051927

RESUMO

RATIONALE: Oral microbiota associate with diseases of the mouth and serve as a source of lung microbiota. However, the role of oral microbiota in lung disease is unknown. OBJECTIVES: To determine associations between oral microbiota and disease severity and death in idiopathic pulmonary fibrosis. METHODS: We analyzed 16S rRNA gene and shotgun metagenomic sequencing data of buccal swabs from 511 patients with idiopathic pulmonary fibrosis in the multicenter CleanUP-IPF trial. Buccal swabs were collected from usual care, and antimicrobial cohorts. Microbiome data was correlated with measures of disease severity using principal component analysis and linear regression models. Associations between the buccal microbiome and mortality were determined using Cox additive models, Kaplan Meier analysis and Cox proportional hazards models. MEASUREMENTS AND MAIN RESULTS: Greater buccal microbial diversity associated with lower forced vital capacity (FVC) at baseline [mean diff -3.60: 95% CI -5.92 to -1.29 percent predicted FVC per 1 unit increment]. The buccal proportion of Streptococcus correlated positively with FVC [mean diff 0.80: 95% CI 0.16-1.43 percent predicted per 10% increase] (n=490). Greater microbial diversity was associated with an increased risk of death [HR 1.73: 95% CI 1.03-2.90] while a greater proportion of Streptococcus was associated with a reduced risk of death [HR 0.85: 95% CI 0.73 to 0.99]. The Streptococcus genus was mainly comprised of Streptococcus mitis species. CONCLUSIONS: Increasing buccal microbial diversity predicts disease severity and death in IPF. The oral commensal Streptococcus mitis spp associates with preserved lung function and improved survival.

4.
Environ Monit Assess ; 196(5): 447, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607511

RESUMO

Assessing the co-occurrence of multiple health risk factors in coastal ecosystems is challenging due to the complexity of multi-factor interactions and limited availability of simultaneously collected data. Understanding co-occurrence is particularly important for risk factors that may be associated with, or occur in similar environmental conditions. In marine ecosystems, the co-occurrence of harmful algal bloom toxins and bacterial pathogens within the genus Vibrio may impact both ecosystem and human health. This study examined the co-occurrence of Vibrio spp. and domoic acid (DA) produced by the harmful algae Pseudo-nitzschia by (1) analyzing existing California Department of Public Health monitoring data for V. parahaemolyticus and DA in oysters; and (2) conducting a 1-year seasonal monitoring of these risk factors across two Southern California embayments. Existing public health monitoring efforts in the state were robust for individual risk factors; however, it was difficult to evaluate the co-occurrence of these risk factors in oysters due to low number of co-monitoring instances between 2015 and 2020. Seasonal co-monitoring of DA and Vibrio spp. (V. vulnificus or V. parahaemolyticus) at two embayments revealed the co-occurrence of these health risk factors in 35% of sampled oysters in most seasons. Interestingly, both the overall detection frequency and co-occurrence of these risk factors were considerably less frequent in water samples. These findings may in part suggest the slow depuration of Vibrio spp. and DA in oysters as residual levels may be retained. This study expanded our understanding of the simultaneous presence of DA and Vibrio spp. in bivalves and demonstrates the feasibility of co-monitoring different risk factors from the same sample. Individual programs monitoring for different risk factors from the same sample matrix may consider combining efforts to reduce cost, streamline the process, and better understand the prevalence of co-occurring health risk factors.


Assuntos
Ecossistema , Ácido Caínico/análogos & derivados , Vibrio , Humanos , Monitoramento Ambiental , Coleta de Dados
5.
Appl Environ Microbiol ; 89(2): e0215322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36656005

RESUMO

As part of society-wide efforts to promote open access in science, the American Society for Microbiology journals are piloting the publication of companion articles highlighting rigorous data resources. The simultaneous publication of original research and data resource articles will increase awareness of, and access to, verified data sets that are critical to scientific progress. Companion articles in Microbiology Resource Announcements and two research journals, mSystems and Applied and Environmental Microbiology, will serve as an initial experiment to promote open and reproducible science.

6.
Appl Environ Microbiol ; 89(7): e0031823, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37318344

RESUMO

Oysters play an important role in coastal ecology and are a globally popular seafood source. However, their filter-feeding lifestyle enables coastal pathogens, toxins, and pollutants to accumulate in their tissues, potentially endangering human health. While pathogen concentrations in coastal waters are often linked to environmental conditions and runoff events, these do not always correlate with pathogen concentrations in oysters. Additional factors related to the microbial ecology of pathogenic bacteria and their relationship with oyster hosts likely play a role in accumulation but are poorly understood. In this study, we investigated whether microbial communities in water and oysters were linked to accumulation of Vibrio parahaemolyticus, Vibrio vulnificus, or fecal indicator bacteria. Site-specific environmental conditions significantly influenced microbial communities and potential pathogen concentrations in water. Oyster microbial communities, however, exhibited less variability in microbial community diversity and accumulation of target bacteria overall and were less impacted by environmental differences between sites. Instead, changes in specific microbial taxa in oyster and water samples, particularly in oyster digestive glands, were linked to elevated levels of potential pathogens. For example, increased levels of V. parahaemolyticus were associated with higher relative abundances of cyanobacteria, which could represent an environmental vector for Vibrio spp. transport, and with decreased relative abundance of Mycoplasma and other key members of the oyster digestive gland microbiota. These findings suggest that host and microbial factors, in addition to environmental variables, may influence pathogen accumulation in oysters. IMPORTANCE Bacteria in the marine environment cause thousands of human illnesses annually. Bivalves are a popular seafood source and are important in coastal ecology, but their ability to concentrate pathogens from the water can cause human illness, threatening seafood safety and security. To predict and prevent disease, it is critical to understand what causes pathogenic bacteria to accumulate in bivalves. In this study, we examined how environmental factors and host and water microbial communities were linked to potential human pathogen accumulation in oysters. Oyster microbial communities were more stable than water communities, and both contained the highest concentrations of Vibrio parahaemolyticus at sites with warmer temperatures and lower salinities. High oyster V. parahaemolyticus concentrations corresponded with abundant cyanobacteria, a potential vector for transmission, and a decrease in potentially beneficial oyster microbes. Our study suggests that poorly understood factors, including host and water microbiota, likely play a role in pathogen distribution and pathogen transmission.


Assuntos
Bivalves , Ostreidae , Vibrio parahaemolyticus , Vibrio vulnificus , Animais , Humanos , Água , Ostreidae/microbiologia , Bactérias/genética
7.
Nature ; 551(7681): 457-463, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29088705

RESUMO

Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.


Assuntos
Biodiversidade , Planeta Terra , Microbiota/genética , Animais , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Ecologia/métodos , Dosagem de Genes , Mapeamento Geográfico , Humanos , Plantas/microbiologia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética
8.
Mol Ecol ; 31(7): 1939-1950, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34181795

RESUMO

Skin is the largest mammalian organ and the first defensive barrier against the external environment. The skin and fur of mammals can host a wide variety of ectoparasites, many of which are phylogenetically diverse, specialized, and specifically adapted to their hosts. Among hematophagous dipteran parasites, volatile organic compounds (VOCs) are known to serve as important attractants, leading parasites to compatible sources of blood meals. VOCs have been hypothesized to be mediated by host-associated bacteria, which may thereby indirectly influence parasitism. Host-associated bacteria may also influence parasitism directly, as has been observed in interactions between animal gut microbiota and malarial parasites. Hypotheses relating bacterial symbionts and eukaryotic parasitism have rarely been tested among humans and domestic animals, and to our knowledge have not been tested in wild vertebrates. In this study, we used Afrotropical bats, hematophagous ectoparasitic bat flies, and haemosporidian (malarial) parasites vectored by bat flies as a model to test the hypothesis that the vertebrate host microbiome is linked to parasitism in a wild system. We identified significant correlations between bacterial community composition of the skin and dipteran ectoparasite prevalence across four major bat lineages, as well as striking differences in skin microbial network characteristics between ectoparasitized and nonectoparasitized bats. We also identified links between the oral microbiome and presence of malarial parasites among miniopterid bats. Our results support the hypothesis that microbial symbionts may serve as indirect mediators of parasitism among eukaryotic hosts and parasites.


Assuntos
Quirópteros , Dípteros , Microbiota , Parasitos , Animais , Bactérias/genética , Eucariotos , Interações Hospedeiro-Parasita , Simbiose
9.
Chem Rev ; 120(24): 13273-13311, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33089988

RESUMO

Nature is full of examples of symbiotic relationships. The critical symbiotic relation between host and mutualistic bacteria is attracting increasing attention to the degree that the gut microbiome is proposed by some as a new organ system. The microbiome exerts its systemic effect through a diverse range of metabolites, which include gaseous molecules such as H2, CO2, NH3, CH4, NO, H2S, and CO. In turn, the human host can influence the microbiome through these gaseous molecules as well in a reciprocal manner. Among these gaseous molecules, NO, H2S, and CO occupy a special place because of their widely known physiological functions in the host and their overlap and similarity in both targets and functions. The roles that NO and H2S play have been extensively examined by others. Herein, the roles of CO in host-gut microbiome communication are examined through a discussion of (1) host production and function of CO, (2) available CO donors as research tools, (3) CO production from diet and bacterial sources, (4) effect of CO on bacteria including CO sensing, and (5) gut microbiome production of CO. There is a large amount of literature suggesting the "messenger" role of CO in host-gut microbiome communication. However, much more work is needed to begin achieving a systematic understanding of this issue.


Assuntos
Bactérias/metabolismo , Monóxido de Carbono/metabolismo , Microbioma Gastrointestinal/fisiologia , Animais , Fenômenos Fisiológicos Bacterianos , Humanos , Simbiose
10.
Nature ; 535(7610): 94-103, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27383984

RESUMO

Rapid advances in DNA sequencing, metabolomics, proteomics and computational tools are dramatically increasing access to the microbiome and identification of its links with disease. In particular, time-series studies and multiple molecular perspectives are facilitating microbiome-wide association studies, which are analogous to genome-wide association studies. Early findings point to actionable outcomes of microbiome-wide association studies, although their clinical application has yet to be approved. An appreciation of the complexity of interactions among the microbiome and the host's diet, chemistry and health, as well as determining the frequency of observations that are needed to capture and integrate this dynamic interface, is paramount for developing precision diagnostics and therapies that are based on the microbiome.


Assuntos
Bactérias/patogenicidade , Suscetibilidade a Doenças , Doença , Consórcios Microbianos , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Biomarcadores , Suscetibilidade a Doenças/terapia , Saúde , Humanos , Metaboloma , Prognóstico
11.
Clin Exp Rheumatol ; 39 Suppl 132(5): 102-108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34251310

RESUMO

OBJECTIVES: The severity of familial Mediterranean fever (FMF) may vary in different areas, suggesting a role for environmental factors. We analysed the composition of gut microbiota among children with FMF and healthy controls from Turkey and the USA and determined its effect on disease severity. METHODS: Children with FMF with pathogenic MEFV mutations and healthy controls from Turkey and the USA were enrolled. FMF disease activity was evaluated with the Autoinflammatory Disease Activity Index (AIDAI). Gut bacterial diversity was assessed by sequencing 16S rRNA gene libraries. RESULTS: We included 36 children from Turkey (28 patients with FMF, 8 healthy controls), and 21 patients and 6 controls from the USA. In the Turkish group, 28.6% of patients had severe disease, while 13.3% of US group patients had severe disease. As expected, we observed substantial differences between the gut microbiota of children from the two geographic regions, with Turkish patients and controls exhibiting higher relative abundances of Bacteriodia, while US patients and controls exhibited higher relative abundances of Clostridia. Alpha- and betadiversity did not differ significantly between FMF patients and controls, and neither was predictive of disease severity within each geographic region. We observed differences between FMF patients and controls in the relative abundance of some bacterial taxa at the amplicon sequence variant (ASV) level, but these differences received mixed statistical support. CONCLUSIONS: Among an international cohort of children with FMF, we did not find a strong effect of gut microbiota composition on disease severity. Other environmental or epigenetic factors may be operative.


Assuntos
Febre Familiar do Mediterrâneo , Microbioma Gastrointestinal , Criança , Estudos de Coortes , Febre Familiar do Mediterrâneo/diagnóstico , Febre Familiar do Mediterrâneo/genética , Humanos , Mutação , Pirina/genética , RNA Ribossômico 16S , Índice de Gravidade de Doença , Turquia
12.
Indoor Air ; 31(1): 188-205, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32757488

RESUMO

Indoor microbial communities vary in composition and diversity depending on material type, moisture levels, and occupancy. In this study, we integrated bacterial cell counting, fungal biomass estimation, and fluorescence-assisted cell sorting (FACS) with amplicon sequencing of bacterial (16S rRNA) and fungal (ITS) communities to investigate the influence of wetting on medium density fiberboard (MDF) and gypsum wallboard. Surface samples were collected longitudinally from wetted materials maintained at high relative humidity (~95%). Bacterial and fungal growth patterns were strongly time-dependent and material-specific. Fungal growth phenotypes differed between materials: spores dominated MDF surfaces while fungi transitioned from spores to hyphae on gypsum. FACS confirmed that most of the bacterial cells were intact (viable) on both materials over the course of the study. Integrated cell count and biomass data (quantitative profiling) revealed that small changes in relative abundance often resulted from large changes in absolute abundance, while negative correlations in relative abundances were explained by rapid growth of only one group of bacteria or fungi. Comparisons of bacterial-bacterial and fungal-bacterial networks suggested a top-down control of fungi on bacterial growth, possibly via antibiotic production. In conclusion, quantitative profiling provides novel insights into microbial growth dynamics on building materials with potential implications for human health.


Assuntos
Ambiente Construído , Microbiologia Ambiental , Poluição do Ar em Ambientes Fechados , Bactérias , Materiais de Construção , Fungos , Humanos , Umidade , Interações Microbianas , Microbiota , Micobioma , Filogenia , RNA Ribossômico 16S
13.
J Clin Immunol ; 40(1): 179-190, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31807979

RESUMO

Periodic Fever, Aphthous stomatitis, Pharyngitis and Adenitis (PFAPA) syndrome is an inflammatory disorder of childhood classically characterized by recurrent fevers, pharyngitis, stomatitis, cervical adenitis, and leukocytosis. While the mechanism is unclear, previous studies have shown that tonsillectomy can be a therapeutic option with improvement in quality of life in many patients with PFAPA, but the mechanisms behind surgical success remain unknown. In addition, long-term clinical follow-up is lacking. In our tertiary care center cohort, 62 patients with PFAPA syndrome had complete resolution of symptoms after surgery (95.3%). Flow cytometric evaluation demonstrates an inflammatory cell population, distinct from patients with infectious pharyngitis, with increased numbers of CD8+ T cells (5.9% vs. 3.8%, p < 0.01), CD19+ B cells (51% vs. 35%, p < 0.05), and CD19+CD20+CD27+CD38-memory B cells (14% vs. 7.7%, p < 0.01). Cells are primed at baseline with increased percentage of IL-1ß positive cells compared to control tonsil-derived cells, which require exogenous LPS stimulation. Gene expression analysis demonstrates a fivefold upregulation in IL1RN and TNF expression in whole tonsil compared to control tonsils, with persistent activation of the NF-κB signaling pathway, and differential microbial signatures, even in the afebrile period. Our data indicates that PFAPA patient tonsils have localized, persistent inflammation, in the absence of clinical symptoms, which may explain the success of tonsillectomy as an effective surgical treatment option. The differential expression of several genes and microbial signatures suggests the potential for a diagnostic biomarker for PFAPA syndrome.


Assuntos
Microambiente Celular/imunologia , Febre/imunologia , Linfadenite/imunologia , Tonsila Palatina/imunologia , Faringite/imunologia , Estomatite Aftosa/imunologia , Adolescente , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Inflamação/imunologia , Masculino , Síndrome , Tonsilectomia/métodos
14.
Int J Obes (Lond) ; 44(7): 1508-1520, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32321980

RESUMO

BACKGROUND: In animal studies early life antibiotic exposure causes metabolic abnormalities including obesity through microbiota disruption, but evidence from human studies is scarce. We examined involvement of gut microbiota in the associations between infant antibiotic exposure and childhood adiposity. METHODS: Infant antibiotic exposure in the first year of life was ascertained using parental reports during interviewer-administered questionnaires. Primary outcomes were childhood obesity [body mass index (BMI) z-score > 95th percentile] and adiposity [abdominal circumference (AC) and skinfold (triceps + subscapular (SST)) measurements] determined from ages 15-60 months. At age 24 months, when the gut microbiota are more stable, stool samples (n = 392) were collected for the gut microbiota profiling using co-abundancy networks. Associations of antibiotic exposure with obesity and adiposity (n = 1016) were assessed using multiple logistic and linear mixed effects regressions. Key bacteria associated with antibiotics exposure were identified by partial redundancy analysis and multivariate association with linear models. RESULTS: Antibiotic exposure was reported in 38% of study infants. In a fully adjusted model, a higher odds of obesity from 15-60 months of age was observed for any antibiotic exposure [OR(95% CI) = 1.45(1.001, 2.14)] and exposure to ≥3 courses of antibiotics [2.78(1.12, 6.87)]. For continuous adiposity indicators, any antibiotic exposure was associated with higher BMI z-score in boys [ß = 0.15(0.01, 0.28)] but not girls [ß = -0.04(-0.19, 0.11)] (P interaction = 0.026). Similarly, exposure to ≥3 courses of antibiotics was associated with higher AC in boys [1.15(0.05, 2.26) cm] but not girls [0.57(-1.32, 2.45) cm] (P interaction not significant). Repeated exposure to antibiotics was associated with a significant reduction (FDR-corrected P values < 0.05) in a microbial co-abundant group (CAG) represented by Eubacterium hallii, whose proportion was negatively correlated with childhood adiposity. Meanwhile, a CAG represented by Tyzzerella 4 was positively correlated with the repeated use of antibiotics and childhood adiposity. CONCLUSIONS: Infant antibiotic exposure was associated with disruption of the gut microbiota and the higher risks of childhood obesity and increased adiposity.


Assuntos
Adiposidade/efeitos dos fármacos , Antibacterianos/efeitos adversos , Microbioma Gastrointestinal , Obesidade Infantil/epidemiologia , Bactérias/classificação , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Fatores de Risco , Singapura
15.
J Vasc Surg ; 71(4): 1378-1389.e3, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035769

RESUMO

BACKGROUND: Neointimal hyperplasia is a major contributor to restenosis after arterial interventions, but the genetic and environmental mechanisms underlying the variable propensity for neointimal hyperplasia between individuals, including the role of commensal microbiota, are not well understood. We sought to characterize how shifting the microbiome using cage sharing and bedding mixing between rats with differing restenosis phenotypes after carotid artery balloon angioplasty could alter arterial remodeling. METHODS: We co-housed and mixed bedding between genetically distinct rats (Lewis [LE] and Sprague-Dawley [SD]) that harbor different commensal microbes and that are known to have different neointimal hyperplasia responses to carotid artery balloon angioplasty. Sequencing of the 16S ribosomal RNA gene was used to monitor changes in the gut microbiome. RESULTS: There were significant differences in neointimal hyperplasia between non-co-housed LE and SD rats 14 days after carotid artery angioplasty (mean intima + media [I + M] area, 0.117 ± 0.014 mm2 LE vs 0.275 ± 0.021 mm2 SD; P < .001) that were diminished by co-housing. Co-housing also altered local adventitial Ki67 immunoreactivity, local accumulation of leukocytes and macrophages (total and M2), and interleukin 17A concentration 3 days after surgery in each strain. Non-co-housed SD and LE rats had microbiomes distinguished by both weighted (P = .012) and unweighted (P < .001) UniFrac beta diversity distances, although without significant differences in alpha diversity. The difference in unweighted beta diversity between the fecal microbiota of SD and LE rats was significantly reduced by co-housing. Operational taxonomic units that significantly correlated with average I + M area include Parabacteroides distasonis, Desulfovibrio, Methanosphaera, Peptococcus, and Prevotella. Finally, serum concentrations of microbe-derived metabolites hydroxyanthranilic acid and kynurenine/tryptophan ratio were significantly associated with I + M area in both rat strains independent of co-housing. CONCLUSIONS: We describe a novel mechanism for how microbiome manipulations affect arterial remodeling and the inflammatory response after arterial injury. A greater understanding of the host inflammatory-microbe axis could uncover novel therapeutic targets for the prevention and treatment of restenosis.


Assuntos
Angioplastia com Balão , Lesões das Artérias Carótidas/patologia , Microbioma Gastrointestinal , Inflamação/patologia , Neointima/patologia , Animais , Fezes/microbiologia , Hiperplasia , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley
16.
Int J Sports Med ; 41(5): 292-299, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31975357

RESUMO

Exercise can influence gut microbial community structure and diversity; however, the temporal dynamics of this association have rarely been explored. Here we characterized fecal microbiota in response to short term changes in training volume. Fecal samples, body composition, and training logs were collected from Division I NCAA collegiate swimmers during peak training through their in-season taper in 2016 (n=9) and 2017 (n=7), capturing a systematic reduction in training volume near the conclusion of their athletic season. Fecal microbiota were characterized using 16S rRNA V4 amplicon sequencing and multivariate statistical analysis, Spearman rank correlations, and random forest models. Peak training volume, measured as swimming distance, decreased significantly during the study period from 32.6±4.8 km/wk to 11.3±8.1 km/wk (ANOVA, p<0.05); however, body composition showed no significant changes. Coinciding with the decrease in training volume, the microbial community structure showed a significant decrease in overall microbial diversity, a decrease in microbial community structural similarity, and a decrease in the proportion of the bacterial genera Faecalibacterium and Coprococcus. Together these data demonstrate a significant association between short-term changes in training volume and microbial composition and structure in the gut; future research will establish whether these changes are associated with energy balance or nutrient intake.


Assuntos
Microbioma Gastrointestinal , Condicionamento Físico Humano/fisiologia , Natação/fisiologia , Adolescente , Composição Corporal , Metabolismo Energético/fisiologia , Fezes/microbiologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Condicionamento Físico Humano/métodos , Adulto Jovem
17.
J Allergy Clin Immunol ; 144(5): 1214-1227.e7, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31279011

RESUMO

BACKGROUND: The relationship between asthma, atopy, and underlying type 2 (T2) airway inflammation is complex. Although the bacterial airway microbiota is known to differ in asthmatic patients, the fungal and bacterial markers that discriminate T2-high (eosinophilic) and T2-low (neutrophilic/mixed-inflammation) asthma and atopy are still incompletely identified. OBJECTIVES: The aim of this study was to demonstrate the fungal microbiota structure of airways in asthmatic patients associated with T2 inflammation, atopy, and key clinical parameters. METHODS: We collected endobronchial brush (EB) and bronchoalveolar lavage (BAL) samples from 39 asthmatic patients and 19 healthy subjects followed by 16S gene and internal transcribed spacer-based microbiota sequencing. The microbial sequences were classified into exact sequence variants. The T2 phenotype was defined by using a blood eosinophil count with a threshold of 300 cells/µL. RESULTS: Fungal diversity was significantly lower in EB samples from patients with T2-high compared with T2-low inflammation; key fungal genera enriched in patients with T2-high inflammation included Trichoderma species, whereas Penicillium species was enriched in patients with atopy. In BAL fluid samples the dominant genera were Cladosporium, Fusarium, Aspergillus, and Alternaria. Using generalized linear models, we identified significant associations between specific fungal exact sequence variants and FEV1, fraction of exhaled nitric oxide values, BAL fluid cell counts, and corticosteroid use. Investigation of interkingdom (bacterial-fungal) co-occurrence patterns revealed different topologies between asthmatic patients and healthy control subjects. Random forest models with fungal classifiers predicted asthma status with 75% accuracy for BAL fluid samples and 80% accuracy for EB samples. CONCLUSIONS: We demonstrate clear differences in bacterial and fungal microbiota in asthma-associated phenotypes. Our study provides additional support for considering microbial signatures in delineating asthma phenotypes.


Assuntos
Asma/microbiologia , Eosinófilos/imunologia , Fungos/genética , Hipersensibilidade Imediata/microbiologia , Microbiota/imunologia , Neutrófilos/imunologia , Sistema Respiratório/microbiologia , Células Th2/imunologia , Adulto , Asma/imunologia , Citocinas/metabolismo , Feminino , Fungos/imunologia , Humanos , Hipersensibilidade Imediata/imunologia , Masculino , Microbiota/genética , Pessoa de Meia-Idade , Fenótipo , RNA Ribossômico 16S/análise
18.
N Engl J Med ; 375(5): 411-421, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27518660

RESUMO

BACKGROUND: The Amish and Hutterites are U.S. agricultural populations whose lifestyles are remarkably similar in many respects but whose farming practices, in particular, are distinct; the former follow traditional farming practices whereas the latter use industrialized farming practices. The populations also show striking disparities in the prevalence of asthma, and little is known about the immune responses underlying these disparities. METHODS: We studied environmental exposures, genetic ancestry, and immune profiles among 60 Amish and Hutterite children, measuring levels of allergens and endotoxins and assessing the microbiome composition of indoor dust samples. Whole blood was collected to measure serum IgE levels, cytokine responses, and gene expression, and peripheral-blood leukocytes were phenotyped with flow cytometry. The effects of dust extracts obtained from Amish and Hutterite homes on immune and airway responses were assessed in a murine model of experimental allergic asthma. RESULTS: Despite the similar genetic ancestries and lifestyles of Amish and Hutterite children, the prevalence of asthma and allergic sensitization was 4 and 6 times as low in the Amish, whereas median endotoxin levels in Amish house dust was 6.8 times as high. Differences in microbial composition were also observed in dust samples from Amish and Hutterite homes. Profound differences in the proportions, phenotypes, and functions of innate immune cells were also found between the two groups of children. In a mouse model of experimental allergic asthma, the intranasal instillation of dust extracts from Amish but not Hutterite homes significantly inhibited airway hyperreactivity and eosinophilia. These protective effects were abrogated in mice that were deficient in MyD88 and Trif, molecules that are critical in innate immune signaling. CONCLUSIONS: The results of our studies in humans and mice indicate that the Amish environment provides protection against asthma by engaging and shaping the innate immune response. (Funded by the National Institutes of Health and others.).


Assuntos
Agricultura , Asma/imunologia , Exposição Ambiental , Imunidade Inata , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Adolescente , Animais , Asma/epidemiologia , Criança , Cristianismo , Estudos Transversais , Citocinas/sangue , Modelos Animais de Doenças , Poeira/imunologia , Feminino , Expressão Gênica , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Imunoglobulina E/sangue , Contagem de Leucócitos , Leucócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Animais , Fator 88 de Diferenciação Mieloide/deficiência , Prevalência
19.
Pediatr Res ; 85(3): 361-368, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30631136

RESUMO

BACKGROUND: Premature infants often develop enteric dysbiosis with a preponderance of Gammaproteobacteria, which has been related to adverse clinical outcomes. We investigated the relationship between increasing fecal Gammaproteobacteria and mucosal inflammation, measured by fecal calprotectin (FC). METHODS: Stool samples were collected from very-low-birth weight (VLBW) infants at ≤2, 3, and 4 weeks' postnatal age. Fecal microbiome was surveyed using polymerase chain reaction amplification of the V4 region of 16S ribosomal RNA, and FC was measured by enzyme immunoassay. RESULTS: We enrolled 45 VLBW infants (gestation 27.9 ± 2.2 weeks, birth weight 1126 ± 208 g) and obtained stool samples at 9.9 ± 3, 20.7 ± 4.1, and 29.4 ± 4.9 days. FC was positively correlated with the genus Klebsiella (r = 0.207, p = 0.034) and its dominant amplicon sequence variant (r = 0.290, p = 0.003), but not with the relative abundance of total Gammaproteobacteria. Klebsiella colonized the gut in two distinct patterns: some infants started with low Klebsiella abundance and gained these bacteria over time, whereas others began with very high Klebsiella abundance. CONCLUSION: In premature infants, FC correlated with relative abundance of a specific pathobiont, Klebsiella, and not with that of the class Gammaproteobacteria. These findings indicate a need to define dysbiosis at genera or higher levels of resolution.


Assuntos
Disbiose/diagnóstico , Complexo Antígeno L1 Leucocitário/análise , Peso ao Nascer , Disbiose/microbiologia , Enterocolite Necrosante/microbiologia , Fezes/química , Feminino , Gammaproteobacteria/isolamento & purificação , Microbioma Gastrointestinal , Idade Gestacional , Humanos , Lactente , Lactente Extremamente Prematuro , Recém-Nascido , Recém-Nascido Prematuro , Doenças do Prematuro , Recém-Nascido de muito Baixo Peso , Inflamação , Unidades de Terapia Intensiva Neonatal , Infecções por Klebsiella/diagnóstico , Masculino , Estudos Prospectivos , RNA Ribossômico 16S , Curva ROC , Sensibilidade e Especificidade
20.
Indoor Air ; 29(4): 551-562, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30980566

RESUMO

Microbes in indoor environments are constantly being exposed to antimicrobial surface finishes. Many are rendered non-viable after spending extended periods of time under low-moisture, low-nutrient surface conditions, regardless of whether those surfaces have been amended with antimicrobial chemicals. However, some microorganisms remain viable even after prolonged exposure to these hostile conditions. Work with specific model pathogens makes it difficult to draw general conclusions about how chemical and physical properties of surfaces affect microbes. Here, we explore the survival of a synthetic community of non-model microorganisms isolated from built environments following exposure to three chemically and physically distinct surface finishes. Our findings demonstrated the differences in bacterial survival associated with three chemically and physically distinct materials. Alkaline clay surfaces select for an alkaliphilic bacterium, Kocuria rosea, whereas acidic mold-resistant paint favors Bacillus timonensis, a Gram-negative spore-forming bacterium that also survives on antimicrobial surfaces after 24 hours of exposure. Additionally, antibiotic-resistant Pantoea allii did not exhibit prolonged retention on antimicrobial surfaces. Our controlled microcosm experiment integrates measurement of indoor chemistry and microbiology to elucidate the complex biochemical interactions that influence the indoor microbiome.


Assuntos
Microbiologia Ambiental , Viabilidade Microbiana , Propriedades de Superfície , Actinobacteria/crescimento & desenvolvimento , Poluição do Ar em Ambientes Fechados/prevenção & controle , Anti-Infecciosos/farmacologia , Bacillus/crescimento & desenvolvimento , Streptococcus faecium ATCC 9790/crescimento & desenvolvimento , Microbacterium , Microbiota , Micrococcaceae/crescimento & desenvolvimento , Noroeste dos Estados Unidos , Pintura/microbiologia , Pantoea/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa