Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(4): 510-522, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-34508586

RESUMO

GNAO1 encephalopathy is a neurodevelopmental disorder with a spectrum of symptoms that include dystonic movements, seizures and developmental delay. While numerous GNAO1 mutations are associated with this disorder, the functional consequences of pathological variants are not completely understood. Here, we deployed the invertebrate C. elegans as a whole-animal behavioral model to study the functional effects of GNAO1 disorder-associated mutations. We tested several pathological GNAO1 mutations for effects on locomotor behaviors using a combination of CRISPR/Cas9 gene editing and transgenic overexpression in vivo. We report that all three mutations tested (G42R, G203R and R209C) result in strong loss of function defects when evaluated as homozygous CRISPR alleles. In addition, mutations produced dominant negative effects assessed using both heterozygous CRISPR alleles and transgenic overexpression. Experiments in mice confirmed dominant negative effects of GNAO1 G42R, which impaired numerous motor behaviors. Thus, GNAO1 pathological mutations result in conserved functional outcomes across animal models. Our study further establishes the molecular genetic basis of GNAO1 encephalopathy, and develops a CRISPR-based pipeline for functionally evaluating mutations associated with neurodevelopmental disorders.


Assuntos
Encefalopatias , Transtornos do Neurodesenvolvimento , Animais , Encefalopatias/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Camundongos , Mutação , Transtornos do Neurodesenvolvimento/genética
2.
Brain ; 146(4): 1373-1387, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36200388

RESUMO

The corpus callosum is a bundle of axon fibres that connects the two hemispheres of the brain. Neurodevelopmental disorders that feature dysgenesis of the corpus callosum as a core phenotype offer a valuable window into pathology derived from abnormal axon development. Here, we describe a cohort of eight patients with a neurodevelopmental disorder characterized by a range of deficits including corpus callosum abnormalities, developmental delay, intellectual disability, epilepsy and autistic features. Each patient harboured a distinct de novo variant in MYCBP2, a gene encoding an atypical really interesting new gene (RING) ubiquitin ligase and signalling hub with evolutionarily conserved functions in axon development. We used CRISPR/Cas9 gene editing to introduce disease-associated variants into conserved residues in the Caenorhabditis elegans MYCBP2 orthologue, RPM-1, and evaluated functional outcomes in vivo. Consistent with variable phenotypes in patients with MYCBP2 variants, C. elegans carrying the corresponding human mutations in rpm-1 displayed axonal and behavioural abnormalities including altered habituation. Furthermore, abnormal axonal accumulation of the autophagy marker LGG-1/LC3 occurred in variants that affect RPM-1 ubiquitin ligase activity. Functional genetic outcomes from anatomical, cell biological and behavioural readouts indicate that MYCBP2 variants are likely to result in loss of function. Collectively, our results from multiple human patients and CRISPR gene editing with an in vivo animal model support a direct link between MYCBP2 and a human neurodevelopmental spectrum disorder that we term, MYCBP2-related developmental delay with corpus callosum defects (MDCD).


Assuntos
Proteínas de Caenorhabditis elegans , Deficiência Intelectual , Animais , Humanos , Corpo Caloso/patologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Deficiência Intelectual/genética , Fenótipo , Ligases/genética , Ubiquitinas/genética , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/patologia , Ubiquitina-Proteína Ligases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(11): 6178-6188, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123108

RESUMO

The nervous system evaluates environmental cues and adjusts motor output to ensure navigation toward a preferred environment. The nematode Caenorhabditis elegans navigates in the thermal environment and migrates toward its cultivation temperature by moving up or down thermal gradients depending not only on absolute temperature but on relative difference between current and previously experienced cultivation temperature. Although previous studies showed that such thermal context-dependent opposing migration is mediated by bias in frequency and direction of reorientation behavior, the complete neural pathways-from sensory to motor neurons-and their circuit logics underlying the opposing behavioral bias remain elusive. By conducting comprehensive cell ablation, high-resolution behavioral analyses, and computational modeling, we identified multiple neural pathways regulating behavioral components important for thermotaxis, and demonstrate that distinct sets of neurons are required for opposing bias of even single behavioral components. Furthermore, our imaging analyses show that the context-dependent operation is evident in sensory neurons, very early in the neural pathway, and manifested by bidirectional responses of a first-layer interneuron AIB under different thermal contexts. Our results suggest that the contextual differences are encoded among sensory neurons and a first-layer interneuron, processed among different downstream neurons, and lead to the flexible execution of context-dependent behavior.


Assuntos
Comportamento Animal/fisiologia , Caenorhabditis elegans/fisiologia , Interneurônios/fisiologia , Navegação Espacial/fisiologia , Termorreceptores/fisiologia , Animais , Técnicas de Observação do Comportamento , Locomoção/fisiologia , Vias Neurais/fisiologia , Temperatura , Sensação Térmica/fisiologia
4.
J Biol Chem ; 294(17): 6843-6856, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30858176

RESUMO

Inhibitory GABAergic transmission is required for proper circuit function in the nervous system. However, our understanding of molecular mechanisms that preferentially influence GABAergic transmission, particularly presynaptic mechanisms, remains limited. We previously reported that the ubiquitin ligase EEL-1 preferentially regulates GABAergic presynaptic transmission. To further explore how EEL-1 functions, here we performed affinity purification proteomics using Caenorhabditis elegans and identified the O-GlcNAc transferase OGT-1 as an EEL-1 binding protein. This observation was intriguing, as we know little about how OGT-1 affects neuron function. Using C. elegans biochemistry, we confirmed that the OGT-1/EEL-1 complex forms in neurons in vivo and showed that the human orthologs, OGT and HUWE1, also bind in cell culture. We observed that, like EEL-1, OGT-1 is expressed in GABAergic motor neurons, localizes to GABAergic presynaptic terminals, and functions cell-autonomously to regulate GABA neuron function. Results with catalytically inactive point mutants indicated that OGT-1 glycosyltransferase activity is dispensable for GABA neuron function. Consistent with OGT-1 and EEL-1 forming a complex, genetic results using automated, behavioral pharmacology assays showed that ogt-1 and eel-1 act in parallel to regulate GABA neuron function. These findings demonstrate that OGT-1 and EEL-1 form a conserved signaling complex and function together to affect GABA neuron function.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Neurônios GABAérgicos/fisiologia , N-Acetilglucosaminiltransferases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Aldicarb/farmacologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/isolamento & purificação , Cromatografia de Afinidade , Neurônios GABAérgicos/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Ligação Proteica , Proteômica , Transdução de Sinais , Transmissão Sináptica/efeitos dos fármacos , Ubiquitina-Proteína Ligases/isolamento & purificação
5.
PLoS Genet ; 13(12): e1007095, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29228003

RESUMO

The Pam/Highwire/RPM-1 (PHR) proteins are conserved intracellular signaling hubs that regulate synapse formation and axon termination. The C. elegans PHR protein, called RPM-1, acts as a ubiquitin ligase to inhibit the DLK-1 and MLK-1 MAP kinase pathways. We have identified several kinases that are likely to form a new MAP kinase pathway that suppresses synapse formation defects, but not axon termination defects, in the mechanosensory neurons of rpm-1 mutants. This pathway includes: MIG-15 (MAP4K), NSY-1 (MAP3K), JKK-1 (MAP2K) and JNK-1 (MAPK). Transgenic overexpression of kinases in the MIG-15/JNK-1 pathway is sufficient to impair synapse formation in wild-type animals. The MIG-15/JNK-1 pathway functions cell autonomously in the mechanosensory neurons, and these kinases localize to presynaptic terminals providing further evidence of a role in synapse development. Loss of MIG-15/JNK-1 signaling also suppresses defects in habituation to repeated mechanical stimuli in rpm-1 mutants, a behavioral deficit that is likely to arise from impaired glutamatergic synapse formation. Interestingly, habituation results are consistent with the MIG-15/JNK-1 pathway functioning as a parallel opposing pathway to RPM-1. These findings indicate the MIG-15/JNK-1 pathway can restrict both glutamatergic synapse formation and short-term learning.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sinapses/fisiologia , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Neurogênese , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Sinapses/enzimologia , Ubiquitina-Proteína Ligases/metabolismo
6.
Learn Mem ; 23(10): 495-503, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27634141

RESUMO

Habituation is a highly conserved phenomenon that remains poorly understood at the molecular level. Invertebrate model systems, like Caenorhabditis elegans, can be a powerful tool for investigating this fundamental process. Here we established a high-throughput learning assay that used real-time computer vision software for behavioral tracking and optogenetics for stimulation of the C. elegans polymodal nociceptor, ASH. Photoactivation of ASH with ChR2 elicited backward locomotion and repetitive stimulation altered aspects of the response in a manner consistent with habituation. Recording photocurrents in ASH, we observed no evidence for light adaptation of ChR2. Furthermore, we ruled out fatigue by demonstrating that sensory input from the touch cells could dishabituate the ASH avoidance circuit. Food and dopamine signaling slowed habituation downstream from ASH excitation via D1-like dopamine receptor, DOP-4. This assay allows for large-scale genetic and drug screens investigating mechanisms of nociception modulation.


Assuntos
Aprendizagem da Esquiva/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Habituação Psicofisiológica/fisiologia , Nociceptores/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Dopamina/metabolismo , Comportamento Alimentar/fisiologia , Processamento de Imagem Assistida por Computador , Locomoção/fisiologia , Potenciais da Membrana/fisiologia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Atividade Motora/fisiologia , Mutação , Nociceptores/citologia , Optogenética , Técnicas de Patch-Clamp , Reconhecimento Automatizado de Padrão , Estimulação Luminosa , Receptores de Dopamina D2/genética , Sensação/fisiologia
7.
Nat Methods ; 8(7): 592-8, 2011 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-21642964

RESUMO

We designed a real-time computer vision system, the Multi-Worm Tracker (MWT), which can simultaneously quantify the behavior of dozens of Caenorhabditis elegans on a Petri plate at video rates. We examined three traditional behavioral paradigms using this system: spontaneous movement on food, where the behavior changes over tens of minutes; chemotaxis, where turning events must be detected accurately to determine strategy; and habituation of response to tap, where the response is stochastic and changes over time. In each case, manual analysis or automated single-worm tracking would be tedious and time-consuming, but the MWT system allowed rapid quantification of behavior with minimal human effort. Thus, this system will enable large-scale forward and reverse genetic screens for complex behaviors.


Assuntos
Comportamento Animal/fisiologia , Caenorhabditis elegans/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Software , Animais , Caenorhabditis elegans/genética , Quimiotaxia , Movimento , Processos Estocásticos , Fatores de Tempo
8.
STAR Protoc ; 4(2): 102262, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37294631

RESUMO

We present an optimized protocol for in vivo affinity purification proteomics and biochemistry using the model organism C. elegans. We describe steps for target tagging, large-scale culture, affinity purification using a cryomill, mass spectrometry and validation of candidate binding proteins. Our approach has proven successful for identifying protein-protein interactions and signaling networks with verified functional relevance. Our protocol is also suitable for biochemical evaluation of protein-protein interactions in vivo. For complete details on the use and execution of this protocol, please refer to Crawley et al.,1 Giles et al.,2 and Desbois et al.3.

9.
Nat Neurosci ; 25(9): 1179-1190, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35982154

RESUMO

Repeated exposure to opioids causes tolerance, which limits their analgesic utility and contributes to overdose and abuse liability. However, the molecular mechanisms underpinning tolerance are not well understood. Here, we used a forward genetic screen in Caenorhabditis elegans for unbiased identification of genes regulating opioid tolerance which revealed a role for PTR-25/Ptchd1. We found that PTR-25/Ptchd1 controls µ-opioid receptor trafficking and that these effects were mediated by the ability of PTR-25/Ptchd1 to control membrane cholesterol content. Electrophysiological studies showed that loss of Ptchd1 in mice reduced opioid-induced desensitization of neurons in several brain regions and the peripheral nervous system. Mice and C. elegans lacking Ptchd1/PTR-25 display similarly augmented responses to opioids. Ptchd1 knockout mice fail to develop analgesic tolerance and have greatly diminished somatic withdrawal. Thus, we propose that Ptchd1 plays an evolutionarily conserved role in protecting the µ-opioid receptor against overstimulation.


Assuntos
Analgésicos Opioides , Morfina , Analgésicos Opioides/farmacologia , Animais , Caenorhabditis elegans , Colesterol , Tolerância a Medicamentos , Proteínas de Membrana , Camundongos , Camundongos Knockout , Morfina/farmacologia , Receptores Opioides mu/genética
10.
Neuron ; 55(4): 662-76, 2007 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-17698017

RESUMO

Dopamine has been implicated in the modulation of diverse forms of behavioral plasticity, including appetitive learning and addiction. An important challenge is to understand how dopamine's effects at the cellular level alter the properties of neural circuits to modify behavior. In the nematode C. elegans, dopamine modulates habituation of an escape reflex triggered by body touch. In the absence of food, animals habituate more rapidly than in the presence of food; this contextual information about food availability is provided by dopaminergic mechanosensory neurons that sense the presence of bacteria. We find that dopamine alters habituation kinetics by selectively modulating the touch responses of the anterior-body mechanoreceptors; this modulation involves a D1-like dopamine receptor, a Gq/PLC-beta signaling pathway, and calcium release within the touch neurons. Interestingly, the body touch mechanoreceptors can themselves excite the dopamine neurons, forming a positive feedback loop capable of integrating context and experience to modulate mechanosensory attention.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Dopamina/metabolismo , Plasticidade Neuronal , Neurônios Aferentes/fisiologia , Tato , Animais , Animais Geneticamente Modificados , Comportamento Animal , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Reação de Fuga/fisiologia , Habituação Psicofisiológica/fisiologia , Modelos Biológicos , Mutação/fisiologia , Estimulação Física/métodos , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Transdução de Sinais/fisiologia , Estatísticas não Paramétricas , Fatores de Tempo
11.
Neural Dev ; 15(1): 6, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32336296

RESUMO

Huwe1 is a highly conserved member of the HECT E3 ubiquitin ligase family. Here, we explore the growing importance of Huwe1 in nervous system development, function and disease. We discuss extensive progress made in deciphering how Huwe1 regulates neural progenitor proliferation and differentiation, cell migration, and axon development. We highlight recent evidence indicating that Huwe1 regulates inhibitory neurotransmission. In covering these topics, we focus on findings made using both vertebrate and invertebrate in vivo model systems. Finally, we discuss extensive human genetic studies that strongly implicate HUWE1 in intellectual disability, and heighten the importance of continuing to unravel how Huwe1 affects the nervous system.


Assuntos
Regulação da Expressão Gênica/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Sistema Nervoso , Células-Tronco Neurais/fisiologia , Transtornos do Neurodesenvolvimento/genética , Proteínas Supressoras de Tumor/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Regulação da Expressão Gênica/genética , Humanos , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/metabolismo , Sistema Nervoso/fisiopatologia , Células-Tronco Neurais/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
Neurobiol Learn Mem ; 92(2): 139-46, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18771741

RESUMO

This review surveys the literature that investigates the behavioral characterization and cellular and molecular mechanisms of habituation using the model organism Caenorhabditis elegans. In 1990, C. elegans was first observed to show habituation to a non-localized mechanical tap. The parameters that govern this behavioral plasticity in C. elegans were subsequently characterized, which lead to the important hypothesis that habituation is mediated by multiple mechanisms. Many tools are available to C. elegans researchers that allow for relatively easy genetic manipulation. This has lead to a number of recent genetic studies that have begun to identify key genes and molecules that play a role in the mechanisms of habituation. Some of these genes include a vesicular glutamate transporter, a glutamate receptor subunit, a dopamine receptor and downstream intracellular signaling molecules, such as G proteins and kinases. Some of these genes only affect certain parameters of habituation, but not others supporting the hypothesis that multiple mechanisms mediate habituation. The field of research has also led to the dissection of different phases of memory (short-term vs. long-term memory for habituation), which are triggered by different training paradigms. The differences in mechanism between these various forms of memory are also beginning to be revealed.


Assuntos
Comportamento Animal/fisiologia , Habituação Psicofisiológica/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Memória de Curto Prazo/fisiologia , Rememoração Mental/fisiologia , Modelos Animais , Neurônios/fisiologia , Fosfolipase C beta/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Transdução de Sinais , Proteínas Vesiculares de Transporte de Glutamato
13.
Elife ; 82019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30652969

RESUMO

Synapse formation is comprised of target cell recognition, synapse assembly, and synapse maintenance. Maintaining established synaptic connections is essential for generating functional circuitry and synapse instability is a hallmark of neurodegenerative disease. While many molecules impact synapse formation generally, we know little about molecules that affect synapse maintenance in vivo. Using genetics and developmental time course analysis in C.elegans, we show that the α-tubulin acetyltransferase ATAT-2 and the signaling hub RPM-1 are required presynaptically to maintain stable synapses. Importantly, the enzymatic acetyltransferase activity of ATAT-2 is required for synapse maintenance. Our analysis revealed that RPM-1 is a hub in a genetic network composed of ATAT-2, PTRN-1 and DLK-1. In this network, ATAT-2 functions independent of the DLK-1 MAPK and likely acts downstream of RPM-1. Thus, our study reveals an important role for tubulin acetyltransferase activity in presynaptic maintenance, which occurs via the RPM-1/ATAT-2 pathway.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Terminações Pré-Sinápticas/fisiologia , Transdução de Sinais , Tubulina (Proteína)/metabolismo , Animais , Aprendizagem , Sistema de Sinalização das MAP Quinases , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo
14.
Nat Commun ; 10(1): 5017, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676756

RESUMO

Autophagy is an intracellular catabolic process prominent in starvation, aging and disease. Neuronal autophagy is particularly important, as it affects the development and function of the nervous system, and is heavily implicated in neurodegenerative disease. Nonetheless, how autophagy is regulated in neurons remains poorly understood. Using an unbiased proteomics approach, we demonstrate that the primary initiator of autophagy, the UNC-51/ULK kinase, is negatively regulated by the ubiquitin ligase RPM-1. RPM-1 ubiquitin ligase activity restricts UNC-51 and autophagosome formation within specific axonal compartments, and exerts effects broadly across the nervous system. By restraining UNC-51 activity, RPM-1 inhibits autophagosome formation to affect axon termination, synapse maintenance and behavioral habituation. These results demonstrate how UNC-51 and autophagy are regulated subcellularly in axons, and unveils a mechanism for restricting initiation of autophagy across the nervous system. Our findings have important implications beyond nervous system development, given growing links between altered autophagy regulation and neurodegenerative diseases.


Assuntos
Autofagia/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Animais Geneticamente Modificados , Autofagossomos/metabolismo , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Axônios/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular Tumoral , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Doenças Neurodegenerativas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica/métodos , Sinapses/genética , Sinapses/metabolismo , Ubiquitina-Proteína Ligases/genética
15.
Sci Rep ; 9(1): 10104, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300701

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons, for which there is no effective treatment. Previously, we generated a Caenorhabditis elegans model of ALS, in which the expression of dnc-1, the homologous gene of human dynactin-1, is knocked down (KD) specifically in motor neurons. This dnc-1 KD model showed progressive motor defects together with axonal and neuronal degeneration, as observed in ALS patients. In the present study, we established a behavior-based, automated, and quantitative drug screening system using this dnc-1 KD model together with Multi-Worm Tracker (MWT), and tested whether 38 candidate neuroprotective compounds could improve the mobility of the dnc-1 KD animals. We found that 12 compounds, including riluzole, which is an approved medication for ALS patients, ameliorated the phenotype of the dnc-1 KD animals. Nifedipine, a calcium channel blocker, most robustly ameliorated the motor deficits as well as axonal degeneration of dnc-1 KD animals. Nifedipine also ameliorated the motor defects of other motor neuronal degeneration models of C. elegans, including dnc-1 mutants and human TAR DNA-binding protein of 43 kDa overexpressing worms. Our results indicate that dnc-1 KD in C. elegans is a useful model for the screening of drugs against motor neuron degeneration, and that MWT is a powerful tool for the behavior-based screening of drugs.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Fármacos Neuroprotetores/farmacologia , Nifedipino/farmacologia , Riluzol/farmacologia , Esclerose Lateral Amiotrófica/patologia , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Modelos Animais de Doenças , Complexo Dinactina/genética , Humanos , Neurônios Motores/patologia
16.
Science ; 365(6459): 1267-1273, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31416932

RESUMO

Opioids target the µ-opioid receptor (MOR) to produce unrivaled pain management, but their addictive properties can lead to severe abuse. We developed a whole-animal behavioral platform for unbiased discovery of genes influencing opioid responsiveness. Using forward genetics in Caenorhabditis elegans, we identified a conserved orphan receptor, GPR139, with anti-opioid activity. GPR139 is coexpressed with MOR in opioid-sensitive brain circuits, binds to MOR, and inhibits signaling to heterotrimeric guanine nucleotide-binding proteins (G proteins). Deletion of GPR139 in mice enhanced opioid-induced inhibition of neuronal firing to modulate morphine-induced analgesia, reward, and withdrawal. Thus, GPR139 could be a useful target for increasing opioid safety. These results also demonstrate the potential of C. elegans as a scalable platform for genetic discovery of G protein-coupled receptor signaling principles.


Assuntos
Comportamento Animal , Caenorhabditis elegans/genética , Proteínas do Tecido Nervoso/genética , Receptores Nucleares Órfãos/genética , Receptores Acoplados a Proteínas G/genética , Receptores Opioides mu/genética , Analgesia , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Mapeamento Cromossômico , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Morfina/farmacologia , Neurônios/efeitos dos fármacos , Transdução de Sinais
17.
Psychopharmacology (Berl) ; 190(1): 65-72, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17047929

RESUMO

RATIONALE: The nucleus accumbens (NAc) plays a central role in dopamine-produced reward-related learning. In previous studies, the cyclic adenosine monophosphate-dependent protein kinase (PKA) inhibitor Rp-Cyclic 3',5'-hydrogen phosphorothioate adenosine triethylammonium salt (Rp-cAMPS) blocked the acquisition but not expression of NAc reward-related learning for natural rewards and the acquisition of psychostimulant drug conditioning. OBJECTIVES: The current study assessed the role of PKA in the expression of NAc amphetamine (amph)-produced conditioning using conditioned activity (CA). MATERIALS AND METHODS: After 5 days of habituation, a test environment was paired with bilateral NAc injections of amph (0.0 or 25.0 micro g) and the PKA inhibitor Rp-cAMPS (0.0, 5.0, 10.0, or 20.0 micro g) over three 60-min conditioning sessions separated by 48 h. To test for effects on expression, some groups received vehicle or amph alone before conditioning sessions and were injected with 0.0, 0.25, 5.0, or 20.0 mug of Rp-cAMPS before the single 60-min test session. RESULTS: Amph produced acute increases in locomotion and robust CA. Rp-cAMPS impaired the acquisition of amph-produced CA but not its expression; in fact, it enhanced expression. CONCLUSIONS: Results show that PKA inhibition blocks the acquisition but not the expression of amph-produced conditioning.


Assuntos
Anfetamina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Condicionamento Operante/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , AMP Cíclico/análogos & derivados , Rememoração Mental/efeitos dos fármacos , Motivação , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Tionucleotídeos/farmacologia , Animais , Aprendizagem por Associação/efeitos dos fármacos , Aprendizagem por Associação/fisiologia , Mapeamento Encefálico , AMP Cíclico/farmacologia , Dominância Cerebral/efeitos dos fármacos , Dominância Cerebral/fisiologia , Relação Dose-Resposta a Droga , Masculino , Rememoração Mental/fisiologia , Atividade Motora/fisiologia , Núcleo Accumbens/fisiologia , Ratos , Ratos Wistar
18.
NPJ Sci Learn ; 2: 9, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30631455

RESUMO

Habituation is a non-associative form of learning characterized by a decremented response to repeated stimulation. It is typically framed as a process of selective attention, allowing animals to ignore irrelevant stimuli in order to free up limited cognitive resources. However, habituation can also occur to threatening and toxic stimuli, suggesting that habituation may serve other functions. Here we took advantage of a high-throughput Caenorhabditis elegans learning assay to investigate habituation to noxious stimuli. Using real-time computer vision software for automated behavioral tracking and optogenetics for controlled activation of a polymodal nociceptor, ASH, we found that neuropeptides mediated habituation and performed an RNAi screen to identify candidate receptors. Through subsequent mutant analysis and cell-type-specific gene expression, we found that pigment-dispersing factor (PDF) neuropeptides function redundantly to promote habituation via PDFR-1-mediated cAMP signaling in both neurons and muscles. Behavioral analysis during learning acquisition suggests that response habituation and sensitization of locomotion are parts of a shifting behavioral strategy orchestrated by pigment dispersing factor signaling to promote dispersal away from repeated aversive stimuli.

19.
Cell Rep ; 19(4): 822-835, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28445732

RESUMO

Genetic changes in the HECT ubiquitin ligase HUWE1 are associated with intellectual disability, but it remains unknown whether HUWE1 functions in post-mitotic neurons to affect circuit function. Using genetics, pharmacology, and electrophysiology, we show that EEL-1, the HUWE1 ortholog in C. elegans, preferentially regulates GABAergic presynaptic transmission. Decreasing or increasing EEL-1 function alters GABAergic transmission and the excitatory/inhibitory (E/I) balance in the worm motor circuit, which leads to impaired locomotion and increased sensitivity to electroshock. Furthermore, multiple mutations associated with intellectual disability impair EEL-1 function. Although synaptic transmission defects did not result from abnormal synapse formation, sensitizing genetic backgrounds revealed that EEL-1 functions in the same pathway as the RING family ubiquitin ligase RPM-1 to regulate synapse formation and axon termination. These findings from a simple model circuit provide insight into the molecular mechanisms required to obtain E/I balance and could have implications for the link between HUWE1 and intellectual disability.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Neurônios GABAérgicos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Aldicarb/toxicidade , Animais , Animais Geneticamente Modificados/metabolismo , Axônios/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Eletrochoque , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hipersensibilidade/etiologia , Locomoção/efeitos dos fármacos , Mutagênese Sítio-Dirigida , Terminações Pré-Sinápticas/metabolismo , Interferência de RNA , Transdução de Sinais , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética
20.
G3 (Bethesda) ; 5(12): 2745-57, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26464359

RESUMO

The PAM/Highwire/RPM-1 (PHR) proteins are signaling hubs that function as important regulators of neural development. Loss of function in Caenorhabditis elegans rpm-1 and Drosophila Highwire results in failed axon termination, inappropriate axon targeting, and abnormal synapse formation. Despite broad expression in the nervous system and relatively dramatic defects in synapse formation and axon development, very mild abnormalities in behavior have been found in animals lacking PHR protein function. Therefore, we hypothesized that large defects in behavior might only be detected in scenarios in which evoked, prolonged circuit function is required, or in which behavioral plasticity occurs. Using quantitative approaches in C. elegans, we found that rpm-1 loss-of-function mutants have relatively mild abnormalities in exploratory locomotion, but have large defects in evoked responses to harsh touch and learning associated with tap habituation. We explored the nature of the severe habituation defects in rpm-1 mutants further. To address what part of the habituation circuit was impaired in rpm-1 mutants, we performed rescue analysis with promoters for different neurons. Our findings indicate that RPM-1 function in the mechanosensory neurons affects habituation. Transgenic expression of RPM-1 in adult animals failed to rescue habituation defects, consistent with developmental defects in rpm-1 mutants resulting in impaired habituation. Genetic analysis showed that other regulators of neuronal development that function in the rpm-1 pathway (including glo-4, fsn-1, and dlk-1) also affected habituation. Overall, our findings suggest that developmental defects in rpm-1 mutants manifest most prominently in behaviors that require protracted or plastic circuit function, such as learning.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Habituação Psicofisiológica/genética , Locomoção/genética , Mecanotransdução Celular , Mutação , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa