Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell Rep ; 27(7): 1967-1978.e4, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091437

RESUMO

Lymphatic vasculature is crucial for metastasis in triple-negative breast cancer (TNBC); however, cellular and molecular drivers controlling lymphovascular metastasis are poorly understood. We define a macrophage-dependent signaling cascade that facilitates metastasis through lymphovascular remodeling. TNBC cells instigate mRNA changes in macrophages, resulting in ß4 integrin-dependent adhesion to the lymphovasculature. ß4 integrin retains macrophages proximal to lymphatic endothelial cells (LECs), where release of TGF-ß1 drives LEC contraction via RhoA activation. Macrophages promote gross architectural changes to lymphovasculature by increasing dilation, hyperpermeability, and disorganization. TGF-ß1 drives ß4 integrin clustering at the macrophage plasma membrane, further promoting macrophage adhesion and demonstrating the dual functionality of TGF-ß1 signaling in this context. ß4 integrin-expressing macrophages were identified in human breast tumors, and a combination of vascular-remodeling macrophage gene signature and TGF-ß signaling scores correlates with metastasis. We postulate that future clinical strategies for patients with TNBC should target crosstalk between ß4 integrin and TGF-ß1.


Assuntos
Integrina beta4/metabolismo , Vasos Linfáticos/citologia , Vasos Linfáticos/patologia , Macrófagos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Endoteliais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Integrina beta4/genética , Metástase Linfática , Vasos Linfáticos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Calinina
2.
BMC Genomics ; 9: 239, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18498629

RESUMO

BACKGROUND: Estrogen receptor positive (ER+) breast cancers (BC) are heterogeneous with regard to their clinical behavior and response to therapies. The ER is currently the best predictor of response to the anti-estrogen agent tamoxifen, yet up to 30-40% of ER+BC will relapse despite tamoxifen treatment. New prognostic biomarkers and further biological understanding of tamoxifen resistance are required. We used gene expression profiling to develop an outcome-based predictor using a training set of 255 ER+ BC samples from women treated with adjuvant tamoxifen monotherapy. We used clusters of highly correlated genes to develop our predictor to facilitate both signature stability and biological interpretation. Independent validation was performed using 362 tamoxifen-treated ER+ BC samples obtained from multiple institutions and treated with tamoxifen only in the adjuvant and metastatic settings. RESULTS: We developed a gene classifier consisting of 181 genes belonging to 13 biological clusters. In the independent set of adjuvantly-treated samples, it was able to define two distinct prognostic groups (HR 2.01 95%CI: 1.29-3.13; p = 0.002). Six of the 13 gene clusters represented pathways involved in cell cycle and proliferation. In 112 metastatic breast cancer patients treated with tamoxifen, one of the classifier components suggesting a cellular inflammatory mechanism was significantly predictive of response. CONCLUSION: We have developed a gene classifier that can predict clinical outcome in tamoxifen-treated ER+ BC patients. Whilst our study emphasizes the important role of proliferation genes in prognosis, our approach proposes other genes and pathways that may elucidate further mechanisms that influence clinical outcome and prediction of response to tamoxifen.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptores de Estrogênio/metabolismo , Tamoxifeno/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/secundário , Quimioterapia Adjuvante , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Neoplasias Hormônio-Dependentes/genética , Neoplasias Hormônio-Dependentes/metabolismo , Neoplasias Hormônio-Dependentes/secundário , Prognóstico , Receptores de Progesterona/metabolismo
3.
J Clin Oncol ; 25(10): 1239-46, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17401012

RESUMO

PURPOSE: A number of microarray studies have reported distinct molecular profiles of breast cancers (BC), such as basal-like, ErbB2-like, and two to three luminal-like subtypes. These were associated with different clinical outcomes. However, although the basal and the ErbB2 subtypes are repeatedly recognized, identification of estrogen receptor (ER) -positive subtypes has been inconsistent. Therefore, refinement of their molecular definition is needed. MATERIALS AND METHODS: We have previously reported a gene expression grade index (GGI), which defines histologic grade based on gene expression profiles. Using this algorithm, we assigned ER-positive BC to either high-or low-genomic grade subgroups and compared these with previously reported ER-positive molecular classifications. As further validation, we classified 666 ER-positive samples into subtypes and assessed their clinical outcome. RESULTS: Two ER-positive molecular subgroups (high and low genomic grade) could be defined using the GGI. Despite tracking a single biologic pathway, these were highly comparable to the previously described luminal A and B classification and significantly correlated to the risk groups produced using the 21-gene recurrence score. The two subtypes were associated with statistically distinct clinical outcome in both systemically untreated and tamoxifen-treated populations. CONCLUSION: The use of genomic grade can identify two clinically distinct ER-positive molecular subtypes in a simple and highly reproducible manner across multiple data sets. This study emphasizes the important role of proliferation-related genes in predicting prognosis in ER-positive BC.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Receptores de Estrogênio/análise , Neoplasias da Mama/química , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Feminino , Humanos , Análise Multivariada , Prognóstico , Tamoxifeno/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa