Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 19(4): 375-385, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29556000

RESUMO

Allergic inflammation has crucial roles in allergic diseases such as asthma. It is therefore important to understand why and how the immune system responds to allergens. Here we found that full-length interleukin 33 (IL-33FL), an alarmin cytokine with critical roles in type 2 immunity and asthma, functioned as a protease sensor that detected proteolytic activities associated with various environmental allergens across four kingdoms, including fungi, house dust mites, bacteria and pollens. When exposed to allergen proteases, IL-33FL was rapidly cleaved in its central 'sensor' domain, which led to activation of the production of type 2 cytokines in group 2 innate lymphoid cells. Preventing cleavage of IL-33FL reduced allergic airway inflammation. Our findings reveal a molecular mechanism for the rapid induction of allergic type 2 inflammation following allergen exposure, with important implications for allergic diseases.


Assuntos
Alérgenos/imunologia , Hipersensibilidade/imunologia , Inflamação/imunologia , Interleucina-33/imunologia , Animais , Humanos , Hipersensibilidade/metabolismo , Inflamação/metabolismo , Interleucina-33/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteólise
2.
Immunity ; 47(5): 928-942.e7, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166590

RESUMO

Pancreatic-islet inflammation contributes to the failure of ß cell insulin secretion during obesity and type 2 diabetes. However, little is known about the nature and function of resident immune cells in this context or in homeostasis. Here we show that interleukin (IL)-33 was produced by islet mesenchymal cells and enhanced by a diabetes milieu (glucose, IL-1ß, and palmitate). IL-33 promoted ß cell function through islet-resident group 2 innate lymphoid cells (ILC2s) that elicited retinoic acid (RA)-producing capacities in macrophages and dendritic cells via the secretion of IL-13 and colony-stimulating factor 2. In turn, local RA signaled to the ß cells to increase insulin secretion. This IL-33-ILC2 axis was activated after acute ß cell stress but was defective during chronic obesity. Accordingly, IL-33 injections rescued islet function in obese mice. Our findings provide evidence that an immunometabolic crosstalk between islet-derived IL-33, ILC2s, and myeloid cells fosters insulin secretion.


Assuntos
Insulina/metabolismo , Interleucina-33/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Células Mieloides/metabolismo , Tretinoína/metabolismo , Animais , Humanos , Inflamação/imunologia , Secreção de Insulina , Interleucina-33/biossíntese , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/patologia , Linfócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vitamina A/fisiologia
3.
PLoS Pathog ; 18(7): e1010305, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35849616

RESUMO

Multiple regulated neutrophil cell death programs contribute to host defense against infections. However, despite expressing all necessary inflammasome components, neutrophils are thought to be generally defective in Caspase-1-dependent pyroptosis. By screening different bacterial species, we found that several Pseudomonas aeruginosa (P. aeruginosa) strains trigger Caspase-1-dependent pyroptosis in human and murine neutrophils. Notably, deletion of Exotoxins U or S in P. aeruginosa enhanced neutrophil death to Caspase-1-dependent pyroptosis, suggesting that these exotoxins interfere with this pathway. Mechanistically, P. aeruginosa Flagellin activates the NLRC4 inflammasome, which supports Caspase-1-driven interleukin (IL)-1ß secretion and Gasdermin D (GSDMD)-dependent neutrophil pyroptosis. Furthermore, P. aeruginosa-induced GSDMD activation triggers Calcium-dependent and Peptidyl Arginine Deaminase-4-driven histone citrullination and translocation of neutrophil DNA into the cell cytosol without inducing extracellular Neutrophil Extracellular Traps. Finally, we show that neutrophil Caspase-1 contributes to IL-1ß production and susceptibility to pyroptosis-inducing P. aeruginosa strains in vivo. Overall, we demonstrate that neutrophils are not universally resistant for Caspase-1-dependent pyroptosis.


Assuntos
Inflamassomos , Piroptose , Animais , Proteínas Reguladoras de Apoptose/genética , Caspase 1/metabolismo , Exotoxinas/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/microbiologia , Pseudomonas aeruginosa/metabolismo
4.
Immunol Cell Biol ; 101(1): 65-77, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36260372

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been implicated in numerous chronic inflammatory diseases, including multiple sclerosis (MS). GM-CSF impacts multiple properties and functions of myeloid cells via species-specific mechanisms. Therefore, we assessed the effect of GM-CSF on different human myeloid cell populations found in MS lesions: monocyte-derived macrophages (MDMs) and microglia. We previously reported a greater number of interleukin (IL)-15+ myeloid cells in the brain of patients with MS than in controls. Therefore, we investigated whether GM-CSF exerts its deleterious effects in MS by increasing IL-15 expression on myeloid cells. We found that GM-CSF increased the proportion of IL-15+ cells and/or IL-15 levels on nonpolarized, M1-polarized and M2-polarized MDMs from healthy donors and patients with MS. GM-CSF also increased IL-15 levels on human adult microglia. When cocultured with GM-CSF-stimulated MDMs, activated autologous CD8+ T lymphocytes secreted and expressed significantly higher levels of effector molecules (e.g. interferon-γ and GM-CSF) compared with cocultures with unstimulated MDMs. However, neutralizing IL-15 did not attenuate enhanced effector molecule expression on CD8+ T lymphocytes triggered by GM-CSF-stimulated MDMs. We showed that GM-CSF stimulation of MDMs increased their expression of CD80 and ICAM-1 and their secretion of IL-6, IL-27 and tumor necrosis factor. These molecules could participate in boosting the effector properties of CD8+ T lymphocytes independently of IL-15. By contrast, GM-CSF did not alter CD80, IL-27, tumor necrosis factor and chemokine (C-X-C motif) ligand 10 expression/secretion by human microglia. Therefore, our results underline the distinct impact of GM-CSF on human myeloid cells abundantly present in MS lesions.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Interleucina-27 , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Interleucina-15 , Macrófagos/metabolismo , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa
5.
J Allergy Clin Immunol ; 149(1): 237-251.e12, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33964300

RESUMO

BACKGROUND: Allergic asthma is more severe and frequent in women than in men. In male mice, androgens negatively control group 2 innate lymphoid cell (ILC2) development and function by yet unknown mechanisms. OBJECTIVES: We sought to investigate the impact of androgen on ILC2 homeostasis and IL-33-mediated inflammation in female lungs. We evaluated the role of androgen receptor (AR) signaling and the contribution of the putative inhibitory receptor killer cell lectin-like receptor G1 (KLRG1). METHODS: Subcutaneous pellets mimicking physiological levels of androgen were used to treat female mice together with mice expressing a reporter enzyme under the control of androgen response elements and mixed bone marrow chimeras to assess the cell-intrinsic role of AR activation within ILC2s. We generated KLRG1-deficient mice. RESULTS: We established that lung ILC2s express a functionally active AR that can be in vivo targeted with exogenous androgens to negatively control ILC2 homeostasis, proliferation, and function. Androgen signaling upregulated KLRG1 on ILC2s, which inhibited their proliferation on E-cadherin interaction. Despite evidence that KLRG1 impaired the competitive fitness of lung ILC2s during inflammation, KLRG1 deficiency neither alters in vivo ILC2 numbers and functions, nor did it lead to hyperactive ILC2s in either sexes. CONCLUSIONS: AR agonists can be used in vivo to inhibit ILC2 homeostatic numbers and ILC2-dependent lung inflammation through cell-intrinsic AR activation. Although androgen signals in ILC2s to upregulate KLRG1, we demonstrate that KLRG1 is dispensable for androgen-mediated inhibition of pulmonary ILC2s.


Assuntos
Androgênios/farmacologia , Lectinas Tipo C/imunologia , Linfócitos/imunologia , Pneumonia/imunologia , Receptores Imunológicos/imunologia , Testosterona/farmacologia , Animais , Feminino , Interleucina-33/imunologia , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia/patologia , Caracteres Sexuais , Transdução de Sinais
6.
Cytokine ; 156: 155891, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35640416

RESUMO

Interleukin-33 (IL-33), a member of the IL-1 family, is an alarmin cytokine with crucial roles in tissue homeostasis and repair, type 2 immunity, allergic and non-allergic inflammation, viral infection, and cancer. IL-33 is abundant in the nuclei of tissue-derived cells, including endothelial cells from blood vessels, epithelial cells from barrier tissues, and fibroblastic stromal cells from various tissues. IL-33 is released upon cell damage or tissue injury and activates Myd88-dependent signaling pathways in cells expressing the ST2 (IL-1RL1) receptor. Analysis of patient samples and studies in murine models support an important role of IL-33/ST2 signaling in allergic inflammation in different tissues (lung, nasopharynx, skin) and diseases (asthma, chronic rhinosinusitis, allergic rhinitis, atopic dermatitis). IL33 and IL1RL1/ST2 are among the most highly replicated susceptibility loci for asthma. However, the IL-33/ST2 pathway is also important in non-allergic inflammation. Indeed, targets of IL-33 include immune cells involved in both type 2 and type 1 immunity and regulatory responses, such as group 2 innate lymphoid cells (ILC2s), mast cells, regulatory T cells (Tregs), Th2 cells, basophils, eosinophils, macrophages, dendritic cells (DCs), neutrophils, Th1 cells, CD8 T cells, NK and iNKT cells. In the main part of this review, we discuss the basic biology of the IL-33 protein (molecular characteristics, nuclear localization, cellular sources in vivo), and its mechanisms of release, and bioactive forms in various contexts. Importantly, we alert the scientific community to the problems of specificity of IL-33 reagents, we explain why studies without specificity controls with IL-33-deficient cells are misleading to the field and lead to unnecessary controversy, and we make recommendations to generate reliable results. In the final part, we review the genetic and environmental regulation of IL-33 in allergic airway inflammation and asthma, and we highlight recent studies showing clinical efficacy of anti-IL-33 antibodies in asthma and chronic obstructive pulmonary disease (COPD).


Assuntos
Asma , Interleucina-33 , Animais , Asma/genética , Biologia , Citocinas , Células Endoteliais/metabolismo , Humanos , Imunidade Inata , Inflamação , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Linfócitos/metabolismo , Camundongos , Células Th2
7.
Immunol Rev ; 281(1): 154-168, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29247993

RESUMO

Interleukin-33 (IL-33) is a tissue-derived nuclear cytokine from the IL-1 family abundantly expressed in endothelial cells, epithelial cells and fibroblast-like cells, both during homeostasis and inflammation. It functions as an alarm signal (alarmin) released upon cell injury or tissue damage to alert immune cells expressing the ST2 receptor (IL-1RL1). The major targets of IL-33 in vivo are tissue-resident immune cells such as mast cells, group 2 innate lymphoid cells (ILC2s) and regulatory T cells (Tregs). Other cellular targets include T helper 2 (Th2) cells, eosinophils, basophils, dendritic cells, Th1 cells, CD8+ T cells, NK cells, iNKT cells, B cells, neutrophils and macrophages. IL-33 is thus emerging as a crucial immune modulator with pleiotropic activities in type-2, type-1 and regulatory immune responses, and important roles in allergic, fibrotic, infectious, and chronic inflammatory diseases. The critical function of IL-33/ST2 signaling in allergic inflammation is illustrated by the fact that IL33 and IL1RL1 are among the most highly replicated susceptibility loci for asthma. In this review, we highlight 15 years of discoveries on IL-33 protein, including its molecular characteristics, nuclear localization, bioactive forms, cellular sources, mechanisms of release and regulation by proteases. Importantly, we emphasize data that have been validated using IL-33-deficient cells.


Assuntos
Células Endoteliais/fisiologia , Células Epiteliais/fisiologia , Fibroblastos/fisiologia , Hipersensibilidade/imunologia , Interleucina-33/metabolismo , Animais , Homeostase , Humanos , Inflamação , Interleucina-1/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo
8.
Angiogenesis ; 24(4): 719-753, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33956259

RESUMO

High endothelial venules (HEVs) are specialized blood vessels mediating lymphocyte trafficking to lymph nodes (LNs) and other secondary lymphoid organs. By supporting high levels of lymphocyte extravasation from the blood, HEVs play an essential role in lymphocyte recirculation and immune surveillance for foreign invaders (bacterial and viral infections) and alterations in the body's own cells (neoantigens in cancer). The HEV network expands during inflammation in immune-stimulated LNs and is profoundly remodeled in metastatic and tumor-draining LNs. HEV-like blood vessels expressing high levels of the HEV-specific sulfated MECA-79 antigens are induced in non-lymphoid tissues at sites of chronic inflammation in many human inflammatory and allergic diseases, including rheumatoid arthritis, Crohn's disease, allergic rhinitis and asthma. Such vessels are believed to contribute to the amplification and maintenance of chronic inflammation. MECA-79+ tumor-associated HEVs (TA-HEVs) are frequently found in human tumors in CD3+ T cell-rich areas or CD20+ B-cell rich tertiary lymphoid structures (TLSs). TA-HEVs have been proposed to play important roles in lymphocyte entry into tumors, a process essential for successful antitumor immunity and lymphocyte-mediated cancer immunotherapy with immune checkpoint inhibitors, vaccines or adoptive T cell therapy. In this review, we highlight the phenotype and function of HEVs in homeostatic, inflamed and tumor-draining lymph nodes, and those of HEV-like blood vessels in chronic inflammatory diseases. Furthermore, we discuss the role and regulation of TA-HEVs in human cancer and mouse tumor models.


Assuntos
Linfonodos , Neoplasias , Animais , Inflamação , Linfócitos , Camundongos , Vênulas
9.
J Immunol ; 203(10): 2602-2613, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31578269

RESUMO

Foxp3+ regulatory T cells are well-known immune suppressor cells in various settings. In this study, we provide evidence that knockout of the relB gene in dendritic cells (DCs) of C57BL/6 mice results in a spontaneous and systemic accumulation of Foxp3+ T regulatory T cells (Tregs) partially at the expense of microbiota-reactive Tregs. Deletion of nfkb2 does not fully recapitulate this phenotype, indicating that alternative NF-κB activation via the RelB/p52 complex is not solely responsible for Treg accumulation. Deletion of RelB in DCs further results in an impaired oral tolerance induction and a marked type 2 immune bias among accumulated Foxp3+ Tregs reminiscent of a tissue Treg signature. Tissue Tregs were fully functional, expanded independently of IL-33, and led to an almost complete Treg-dependent protection from experimental autoimmune encephalomyelitis. Thus, we provide clear evidence that RelB-dependent pathways regulate the capacity of DCs to quantitatively and qualitatively impact on Treg biology and constitute an attractive target for treatment of autoimmune diseases but may come at risk for reduced immune tolerance in the intestinal tract.


Assuntos
Autoimunidade/genética , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Linfócitos T Reguladores/imunologia , Fator de Transcrição RelB/metabolismo , Animais , Células Cultivadas , Fatores de Transcrição Forkhead/metabolismo , Técnicas de Inativação de Genes , Homeostase/imunologia , Tolerância Imunológica/imunologia , Inflamação/imunologia , Interleucina-33/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subunidade p52 de NF-kappa B/metabolismo , Fator de Transcrição RelB/deficiência , Fator de Transcrição RelB/genética
10.
Histopathology ; 76(5): 767-773, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31825109

RESUMO

AIMS: Primary prostatic lymphomas (PPL) is exceedingly rare. The aim of this study was to investigate the largest series of PPL obtained from a nationwide expert pathologist network, and thus try to understand the pathophysiology of these tumours. METHODS AND RESULTS: Up to 66 000 lymphoma cases have been collected and submitted for central expert review by the French Lymphopath network. We confirm the low frequency of PPL (n = 77; 0.12%), all cases being of B-cell origin. Diffuse large B-cell lymphoma and small lymphocytic lymphoma were the most frequent subtypes, comprising 31% and 26% of cases respectively, followed by mucosa-associated lymphoid tissue (MALT)/lymphoplasmacytic lymphoma (19%), follicular lymphoma (12%), mantle cell lymphoma (6%), Burkitt lymphoma (4%), and unclassified lymphoma (1%). Clinical data obtained in 25 cases suggests that PPLs are rather indolent tumours. Our hypothesis for B-cell recruitment in the prostatic tissue was derived from the observation in chronic inflammation (prostatitis) of frequent heterotopic proliferation of high endothelial venules (HEVs). The latter are dedicated to lymphocyte entry into secondary lymphoid organs, here putatively driving circulating clonal B-lymphocytes from the blood into the inflamed prostate. This may account for the relatively high incidence of small lymphocytic lymphoma consistently reported in series of primary or secondary prostatic lymphoma. As in other organs or glands, chronic inflammation may promote antigen-dependent intraprostatic MALT lymphoma and diffuse large B-cell lymphoma development. CONCLUSIONS: PPLs are exclusively of B-cell origin, and chronic inflammation resulting from the proliferation of high endothelial venules could play some role in their development.


Assuntos
Linfoma de Células B/patologia , Neoplasias da Próstata/patologia , Prostatite/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo
11.
Nano Lett ; 19(6): 3699-3706, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31026170

RESUMO

The control of quantum coupling between nano-objects is essential to quantum technologies. Confined nanostructures, such as cavities, resonators, or quantum dots, are designed to enhance interactions between electrons, photons, or phonons, giving rise to new properties, on which devices are developed. The nature and strength of these interactions are often measured indirectly on an assembly of dissimilar objects. Here, we adopt an innovative point of view by directly mapping the coupling of single nanostructures using scanning tunneling microscopy and spectroscopy (STM and STS). We take advantage of the unique capabilities of STM/STS to map simultaneously the nano-object's morphology and electronic density in order to observe in real space the electronic coupling of pairs of In(Ga)As/GaAs self-assembled quantum dots (QDs), forming quantum dot molecules (QDMs). Differential conductance maps d I/d V ( E, x, y) demonstrate the presence of an effective electronic coupling, leading to bonding and antibonding states, even for dissymmetric QDMs. The experimental results are supported by numerical simulations. The actual geometry of the QDMs is taken into account to determine the strength of the coupling, showing the crucial role of quantum dot size and pair separation for device growth optimization.

12.
J Am Soc Nephrol ; 29(4): 1272-1288, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29436517

RESUMO

Inflammation is a prominent feature of ischemia-reperfusion injury (IRI), which is characterized by leukocyte infiltration and renal tubular injury. However, signals that initiate these events remain poorly understood. We examined the role of the nuclear alarmin IL-33 in tissue injury and innate immune response triggered by experimental kidney ischemia-reperfusion. In wild-type mice, we found that IL-33 was constitutively expressed throughout the kidney in peritubular and periglomerular spaces, mainly by microvascular endothelial cells, from which it was released immediately during IRI. Compared with wild-type mice, mice lacking IL-33 (IL-33Gt/Gt) exhibited reductions in early tubular cell injury and subsequent renal infiltration of IFN-γ/IL-17A-producing neutrophils, with preservation of renal functions. This protection associated with decreased renal recruitment of myeloid dendritic cells, natural killer (NK) cells, and invariant natural killer T (iNKT) cells, the latter of which were reported as deleterious in IRI. Increases in the level of circulating IL-12, a key IL-33 cofactor, and the expression of ST2, an IL-33-specific receptor, on the surface of iNKT cells preceded the IL-33- and iNKT cell-dependent phase of neutrophil infiltration. Furthermore, IL-33 directly targeted iNKT cells in vitro, inducing IFN-γ and IL-17A production. We propose that endogenous IL-33 is released as an alarmin and contributes to kidney IRI by promoting iNKT cell recruitment and cytokine production, resulting in neutrophil infiltration and activation at the injury site. Our findings show a novel molecular mediator contributing to innate immune cell recruitment induced by renal ischemia-reperfusion and may provide therapeutic insights into AKI associated with renal transplantation.


Assuntos
Alarminas/fisiologia , Interleucina-33/fisiologia , Rim/irrigação sanguínea , Traumatismo por Reperfusão/metabolismo , Alarminas/deficiência , Alarminas/genética , Animais , Citocinas/biossíntese , Citocinas/genética , Células Dendríticas/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata , Interferon gama/biossíntese , Interferon gama/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/deficiência , Proteína 1 Semelhante a Receptor de Interleucina-1/fisiologia , Interleucina-12/sangue , Interleucina-17/biossíntese , Interleucina-17/genética , Interleucina-33/biossíntese , Interleucina-33/deficiência , Interleucina-33/genética , Rim/imunologia , Rim/metabolismo , Rim/patologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ativação de Neutrófilo , Neutrófilos/imunologia , Traumatismo por Reperfusão/imunologia
13.
J Assist Reprod Genet ; 36(11): 2279-2285, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31444634

RESUMO

PURPOSE: While several studies reported the association between morphokinetic parameters and implantation, few predictive models were developed to predict implantation after day 5 embryo transfer, generally without external validation. The objective of this study was to evaluate the respective performance of 2 commercially available morphokinetic-based models (KIDScore™ Day 5 versions 1 and 2) for the prediction of implantation and live birth after day 5 single blastocyst transfer. METHODS: This monocentric retrospective study was conducted on 210 ICSI cycles with single day 5 embryo transfer performed with a time-lapse imaging (TLI) system between 2013 and 2016. The association between both KIDScore™ and the observed implantation and live birth rates was calculated, as well as the agreement between embryologist's choice for transfer and embryo ranking by the models. RESULTS: Implantation and live birth rate were both 35.7%. A significant positive correlation was found between both models and implantation rate (r = 0.96 and r = 0.90, p = 0.01) respectively. Both models had statistically significant but limited predictive power for implantation (AUC 0.60). There was a fair agreement between the embryologists' choice and both models (78% and 61% respectively), with minor differences in case of discrepancies. CONCLUSIONS: KIDScore™ Day 5 predictive models are significantly associated with implantation rates after day 5 single blastocyst transfer. However, their predictive performance remains perfectible. The use of these predictive models holds promises as decision-making tools to help the embryologist select the best embryo, ultimately facilitating the implementation of SET policy. However, embryologists' expertise remains absolutely necessary to make the final decision.


Assuntos
Blastocisto/fisiologia , Técnicas de Cultura Embrionária/estatística & dados numéricos , Implantação do Embrião/fisiologia , Transferência Embrionária/estatística & dados numéricos , Fertilização in vitro/estatística & dados numéricos , Adulto , Coeficiente de Natalidade , Feminino , Humanos , Nascido Vivo , Masculino , Gravidez , Taxa de Gravidez , Gravidez Múltipla/estatística & dados numéricos , Estudos Retrospectivos , Injeções de Esperma Intracitoplásmicas/estatística & dados numéricos , Imagem com Lapso de Tempo/métodos
14.
Eur J Immunol ; 47(12): 2137-2141, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28741710

RESUMO

From several years, the anticancer effects of Vγ9 T lymphocytes make these cells good candidates for cancer immunotherapies. However, the proved efficacy of γδ Τ cell-based cancer immunotherapies in some clinical trials was minimized due to the inherent toxicity of IL-2, which is essential for the combination therapy with Phosphoantigen (PAg). Recently, we showed that IL-33, a γ chain receptor-independent cytokine, was able to induce the in vitro proliferation of PAg-activated Vγ9 T cells, which were fully functional expressing IFN-γ and TNF-α and showing in vitro anti-tumor cytotoxicity. We proposed IL-33 as an alternative to IL-2 for Vγ9 T cell-based cancer immunotherapies, and have therefore evaluated the efficacy of this cytokine in preclinical investigations. This study shows that human Vγ9 T cells are able to proliferate in a mouse model with the combination of PAg and rhIL-33, and that IL-33-expanded Vγ9 T cells can prevent tumor growth in a mouse lymphoma model.


Assuntos
Imunoterapia/métodos , Interleucina-33/farmacologia , Linfoma/tratamento farmacológico , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/transplante , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Interleucina-33/genética , Linfoma/imunologia , Linfoma/metabolismo , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Proteínas Recombinantes/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia
15.
J Immunol ; 196(1): 493-502, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26608919

RESUMO

The availability of specific stimuli to induce the anticancer cytotoxicity of human TCRVγ9-expressing T lymphocytes has allowed the development of γδ T cell-based cancer immunotherapies. However, the stringent dependence of such strategies on the inherently toxic IL-2 has raised safety concerns for patients, justifying a search for alternative methods for inducing γδ T cell stimulation. IL-33 is a γ-chain receptor-independent cytokine of the IL-1 superfamily that is expressed by endothelial cells from a tumor microenvironment and can sustain Th1 and Th2 immune responses. Therefore, we investigated its ability to support the stimulation of human TCRVγ9(+) γδ T cells. In this study, we report that IL-33 efficiently sustained the in vitro activation of Vγ9 T lymphocytes by synthetic phosphoantigens, zoledronate, and a BTN3A1 Ab in the absence of an exogenous supply of IL-2. IL-33 was as potent as IL-2 in allowing the proliferative amplification of Vγ9 T cells isolated from PBMC following activation by the synthetic phosphoantigen bromohydrin pyrophosphate. IL-33 also induced an identical maturation into TNF-α- and IFN-γ-producing Th1 effector memory cells, and IL-33-stimulated cells showed an equivalent cytotoxicity for various tumor cells in vitro. Finally, we found that the bioactivity of IL-33 on the Vγ9 T cell was indirectly mediated through contact with CD4 T cells and IL-2 production by CD4 T cells and Vγ9 T cells themselves. These data posit IL-33 as an alternative to IL-2 for Vγ9 T cell-based cancer immunotherapies.


Assuntos
Interleucina-33/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Células Th1/imunologia , Antígenos CD/imunologia , Butirofilinas , Proliferação de Células , Células Cultivadas , Difosfatos/farmacologia , Difosfonatos/farmacologia , Células Endoteliais/metabolismo , Humanos , Imidazóis/farmacologia , Imunoterapia , Interferon gama/biossíntese , Interleucina-2/imunologia , Interleucina-2/uso terapêutico , Interleucina-33/uso terapêutico , Leucócitos Mononucleares/imunologia , Ativação Linfocitária/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Ácido Zoledrônico
16.
J Immunol ; 197(5): 1708-19, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474075

RESUMO

IL-33 is strongly involved in several inflammatory and autoimmune disorders with both pro- and anti-inflammatory properties. However, its contribution to chronic autoimmune inflammation, such as rheumatoid arthritis, is ill defined and probably requires tight regulation. In this study, we aimed at deciphering the complex role of IL-33 in a model of rheumatoid arthritis, namely, collagen-induced arthritis (CIA). We report that repeated injections of IL-33 during induction (early) and during development (late) of CIA strongly suppressed clinical and histological signs of arthritis. In contrast, a late IL-33 injection had no effect. The cellular mechanism involved in protection was related to an enhanced type 2 immune response, including the expansion of eosinophils, Th2 cells, and type 2 innate lymphoid cells, associated with an increase in type 2 cytokine levels in the serum of IL-33-treated mice. Moreover, our work strongly highlights the interplay between IL-33 and regulatory T cells (Tregs), demonstrated by the dramatic in vivo increase in Treg frequencies after IL-33 treatment of CIA. More importantly, Tregs from IL-33-treated mice displayed enhanced capacities to suppress IFN-γ production by effector T cells, suggesting that IL-33 not only favors Treg proliferation but also enhances their immunosuppressive properties. In concordance with these observations, we found that IL-33 induced the emergence of a CD39(high) Treg population in a ST2L-dependent manner. Our findings reveal a powerful anti-inflammatory mechanism by which IL-33 administration inhibits arthritis development.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Interleucina-33/uso terapêutico , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Animais , Antígenos CD/genética , Apirase/genética , Artrite Experimental , Artrite Reumatoide/induzido quimicamente , Doenças Autoimunes/imunologia , Colágeno/administração & dosagem , Citocinas/sangue , Modelos Animais de Doenças , Eosinófilos , Interleucina-33/imunologia , Interleucina-33/farmacologia , Camundongos , Camundongos Endogâmicos DBA , Baço/citologia , Baço/efeitos dos fármacos
17.
Gen Comp Endocrinol ; 265: 41-45, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29908834

RESUMO

Hormonally active phytochemicals (HAPs) are signaling molecules produced by plants that alter hormonal signaling in animals, due to consumption or environmental exposure. To date, HAPs have been investigated mainly in terrestrial ecosystems. To gain a full understanding of the origin and evolution of plant-animal interactions, it is necessary also to study these interactions in the marine environment, where the major photosynthetic lineages are very distant from the terrestrial plants. Here we focus on chemicals from red and brown macroalgae and point out their potential role as modulators of the endocrine system of aquatic animals through nuclear hormone receptors. We show that, regarding steroids and oxylipins, there are already some candidates available for further functional investigations of ligand-receptor interactions. Furthermore, several carotenoids, produced by cyanobacteria provide candidates that could be investigated with respect to their presence in macroalgae. Finally, regarding halogenated compounds, it is not clear yet which molecules could bridge the gap to explain the transition from lipid sensing to thyroid hormone high affinity binding among nuclear receptors.


Assuntos
Organismos Aquáticos/metabolismo , Compostos Fitoquímicos/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Alga Marinha/química , Animais , Organismos Aquáticos/efeitos dos fármacos , Ecossistema , Ligantes , Modelos Animais , Compostos Fitoquímicos/química
18.
Blood ; 126(11): 1336-45, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26162407

RESUMO

B-cell chronic lymphocytic leukemia (CLL) is the most common leukemia in adults. Lymph nodes (LNs) are sites of malignant proliferation and LN enlargement is associated with poor prognosis in the clinics. The LN microenvironment is believed to favor disease progression by promoting CLL cell growth and drug resistance. A better understanding of the mechanisms regulating trafficking of CLL cells to LNs is thus urgently needed. Here, we studied the first step of CLL cell migration to LNs, their interaction with high endothelial venules (HEVs), specialized blood vessels for lymphocyte extravasation in lymphoid organs. We observed that the density of HEV blood vessels was increased in CLL LNs and that CD20(+) CLL cells accumulated within HEV pockets, suggesting intense trafficking. We used intravital imaging to visualize the behavior of human CLL cells within the mouse LN microcirculation, and discovered that CLL cells bind to HEVs in vivo via a multistep adhesion cascade, which involves rolling, sticking, and crawling of the leukemic cells on the endothelium. Functional analyses revealed that the lymphocyte homing receptor L-selectin (CD62L) is the key factor controlling the binding of CLL cells to HEV walls in vivo. Interestingly, L-selectin expression was decreased on CLL cells from patients treated with idelalisib, a phosphoinositide-3-kinase δ inhibitor recently approved for CLL therapy. Interference with L-selectin-mediated trafficking in HEVs could represent a novel strategy to block dissemination of CLL cells to LNs and increase the efficacy of conventional therapy.


Assuntos
Selectina L/fisiologia , Leucemia Linfocítica Crônica de Células B/patologia , Leucemia Linfocítica Crônica de Células B/fisiopatologia , Linfonodos/patologia , Vasos Linfáticos/patologia , Adulto , Animais , Antineoplásicos/farmacologia , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Inibidores Enzimáticos/farmacologia , Humanos , Microscopia Intravital , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Fosfoinositídeo-3 Quinase , Purinas/farmacologia , Quinazolinonas/farmacologia
19.
J Immunol ; 194(12): 5948-52, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25926677

RESUMO

NK cells provide important host defense against viruses and can differentiate into self-renewing memory NK cells after infection, alloantigen stimulation, and cytokine stimulation. In this study, we investigated the role of the IL-33 receptor ST2 in the differentiation of NK cells during mouse CMV (MCMV) infection. Although ST2-deficient (Il1rl1 (-/-)) Ly49H(+) NK cells develop normally and differentiate into memory cells after MCMV infection, naive and memory Il1rl1 (-/-) Ly49H(+) NK cells exhibited profound defects in MCMV-specific expansion, resulting in impaired protection against MCMV challenge. Additionally, IL-33 enhanced m157 Ag-specific proliferation of Ly49H(+) NK cells in vitro. Thus, an IL-33/ST2 signaling axis in NK cells contributes to host defense against MCMV.


Assuntos
Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Muromegalovirus/imunologia , Receptores de Interleucina/metabolismo , Animais , Modelos Animais de Doenças , Infecções por Herpesviridae/genética , Interações Hospedeiro-Patógeno/genética , Memória Imunológica , Imunofenotipagem , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Interleucinas/biossíntese , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Fenótipo , Receptores de Interleucina/genética , Baço/imunologia , Baço/metabolismo , Células Estromais/metabolismo
20.
Nature ; 479(7374): 542-6, 2011 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-22080953

RESUMO

While patrolling the body in search of foreign antigens, naive lymphocytes continuously circulate from the blood, through the lymph nodes, into the lymphatic vessels and back to the blood. This process, called lymphocyte recirculation, provides the body with effective immune surveillance for foreign invaders and for alterations to the body's own cells. However, the mechanisms that regulate lymphocyte recirculation during homeostasis remain incompletely characterized. Here we show that dendritic cells (DCs), which are well known for their role in antigen presentation to T lymphocytes, control the entry of naive lymphocytes to lymph nodes by modulating the phenotype of high endothelial venules (HEVs), which are blood vessels specialized in lymphocyte recruitment. We found that in vivo depletion of CD11c(+) DCs in adult mice over a 1-week period induces a reduction in the size and cellularity of the peripheral and mucosal lymph nodes. In the absence of DCs, the mature adult HEV phenotype reverts to an immature neonatal phenotype, and HEV-mediated lymphocyte recruitment to lymph nodes is inhibited. Co-culture experiments showed that the effect of DCs on HEV endothelial cells is direct and requires lymphotoxin-ß-receptor-dependent signalling. DCs express lymphotoxin, and DC-derived lymphotoxin is important for lymphocyte homing to lymph nodes in vivo. Together, our results reveal a previously unsuspected role for DCs in the regulation of lymphocyte recirculation during immune surveillance.


Assuntos
Movimento Celular , Células Dendríticas/imunologia , Células Endoteliais/fisiologia , Linfonodos/citologia , Sistema Linfático/citologia , Sistema Linfático/imunologia , Linfócitos/citologia , Animais , Antígeno CD11c/metabolismo , Adesão Celular , Células Dendríticas/metabolismo , Homeostase/imunologia , Vigilância Imunológica/imunologia , Migração e Rolagem de Leucócitos , Linfonodos/imunologia , Linfócitos/imunologia , Linfotoxina-alfa/imunologia , Linfotoxina-alfa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Receptores de Retorno de Linfócitos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa