Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Biochem Biophys Res Commun ; 509(2): 341-347, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30585150

RESUMO

The mitochondrial ATP synthase of Polytomella exhibits a peripheral stalk and a dimerization domain built by the Asa subunits, unique to chlorophycean algae. The topology of these subunits has been extensively studied. Here we explored the interactions of subunit Asa3 using Far Western blotting and subcomplex reconstitution, and found it associates with Asa1 and Asa8. We also identified the novel interactions Asa1-Asa2 and Asa1-Asa7. In silico analyses of Asa3 revealed that it adopts a HEAT repeat-like structure that points to its location within the enzyme based on the available 3D-map of the algal ATP synthase. We suggest that subunit Asa3 is instrumental in securing the attachment of the peripheral stalk to the membrane sector, thus stabilizing the dimeric mitochondrial ATP synthase.


Assuntos
Proteínas de Algas/química , Membrana Celular/química , Clorofíceas/química , ATPases Mitocondriais Próton-Translocadoras/química , Subunidades Proteicas/química , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Clorofíceas/enzimologia , Clorofíceas/genética , Clorofíceas/ultraestrutura , Clonagem Molecular , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Biochim Biophys Acta Bioenerg ; 1859(6): 434-444, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29540299

RESUMO

The proposal that the respiratory complexes can associate with each other in larger structures named supercomplexes (SC) is generally accepted. In the last decades most of the data about this association came from studies in yeasts, mammals and plants, and information is scarce in other lineages. Here we studied the supramolecular association of the F1FO-ATP synthase (complex V) and the respiratory complexes I, III and IV of the colorless alga Polytomella sp. with an approach that involves solubilization using mild detergents, n-dodecyl-ß-D-maltoside (DDM) or digitonin, followed by separation of native protein complexes by electrophoresis (BN-PAGE), after which we identified oligomeric forms of complex V (mainly V2 and V4) and different respiratory supercomplexes (I/IV6, I/III4, I/IV). In addition, purification/reconstitution of the supercomplexes by anion exchange chromatography was also performed. The data show that these complexes have the ability to strongly associate with each other and form DDM-stable macromolecular structures. The stable V4 ATPase oligomer was observed by electron-microscopy and the association of the respiratory complexes in the so-called "respirasome" was able to perform in-vitro oxygen consumption.


Assuntos
Proteínas de Algas/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Fosforilação Oxidativa , Volvocida/metabolismo , Proteínas de Algas/genética , Detergentes/química , Digitonina/química , Transporte de Elétrons , Complexo I de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Expressão Gênica , Glucosídeos/química , Mitocôndrias/genética , Mitocôndrias/metabolismo , Consumo de Oxigênio/fisiologia , Ligação Proteica , Volvocida/genética
3.
Biochim Biophys Acta Bioenerg ; 1859(8): 602-611, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29778688

RESUMO

The ATP synthase which provides aerobic eukaryotes with ATP, organizes into a membrane-extrinsic catalytic domain, where ATP is generated, and a membrane-embedded FO domain that shuttles protons across the membrane. We previously identified a mutation in the mitochondrial MT-ATP6 gene (m.8969G>A) in a 14-year-old Chinese female who developed an isolated nephropathy followed by brain and muscle problems. This mutation replaces a highly conserved serine residue into asparagine at amino acid position 148 of the membrane-embedded subunit a of ATP synthase. We showed that an equivalent of this mutation in yeast (aS175N) prevents FO-mediated proton translocation. Herein we identified four first-site intragenic suppressors (aN175D, aN175K, aN175I, and aN175T), which, in light of a recently published atomic structure of yeast FO indicates that the detrimental consequences of the original mutation result from the establishment of hydrogen bonds between aN175 and a nearby glutamate residue (aE172) that was proposed to be critical for the exit of protons from the ATP synthase towards the mitochondrial matrix. Interestingly also, we found that the aS175N mutation can be suppressed by second-site suppressors (aP12S, aI171F, aI171N, aI239F, and aI200M), of which some are very distantly located (by 20-30 Å) from the original mutation. The possibility to compensate through long-range effects the aS175N mutation is an interesting observation that holds promise for the development of therapeutic molecules.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Mitocôndrias/metabolismo , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/genética , Conformação Proteica , Subunidades Proteicas , Prótons , Saccharomyces cerevisiae/crescimento & desenvolvimento , Homologia de Sequência
4.
Biochim Biophys Acta Biomembr ; 1859(6): 1144-1155, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28322731

RESUMO

Bax is a major player in the apoptotic process, being at the core of the mitochondria permeabilization events. In spite of the major recent advances in the knowledge of Bax organization within the membrane, the precise behavior of the C-terminal helix α9 remains elusive, since it was absent from the resolved structure of active Bax. The Proline 168 (P168) residue, located in the short loop between α8 and α9, has been the target of site-directed mutagenesis experiments, with conflicting results. We have produced and purified a recombinant mutant Bax-P168A, and we have compared its behavior with that of wild-type Bax in a series of tests on Large Unilamellar Vesicles (LUVs) and isolated mitochondria. We conclude that Bax-P168A had a greater ability to oligomerize and bind to membranes. Bax-P168A was not more efficient than wild-type Bax to permeabilize liposomes to small molecules but was more prone to release cytochrome c from mitochondria.


Assuntos
Alanina/química , Mitocôndrias/metabolismo , Prolina/química , Lipossomas Unilamelares/metabolismo , Proteína X Associada a bcl-2/química , Alanina/metabolismo , Substituição de Aminoácidos , Clonagem Molecular , Citocromos c/metabolismo , Expressão Gênica , Células HCT116 , Humanos , Lipossomos/química , Lipossomos/metabolismo , Mitocôndrias/química , Mutação , Permeabilidade , Prolina/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Lipossomas Unilamelares/química , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
5.
PLoS Genet ; 8(8): e1002876, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916027

RESUMO

Only a few genes remain in the mitochondrial genome retained by every eukaryotic organism that carry out essential functions and are implicated in severe diseases. Experimentally relocating these few genes to the nucleus therefore has both therapeutic and evolutionary implications. Numerous unproductive attempts have been made to do so, with a total of only 5 successes across all organisms. We have taken a novel approach to relocating mitochondrial genes that utilizes naturally nuclear versions from other organisms. We demonstrate this approach on subunit 9/c of ATP synthase, successfully relocating this gene for the first time in any organism by expressing the ATP9 genes from Podospora anserina in Saccharomyces cerevisiae. This study substantiates the role of protein structure in mitochondrial gene transfer: expression of chimeric constructs reveals that the P. anserina proteins can be correctly imported into mitochondria due to reduced hydrophobicity of the first transmembrane segment. Nuclear expression of ATP9, while permitting almost fully functional oxidative phosphorylation, perturbs many cellular properties, including cellular morphology, and activates the heat shock response. Altogether, our study establishes a novel strategy for allotopic expression of mitochondrial genes, demonstrates the complex adaptations required to relocate ATP9, and indicates a reason that this gene was only transferred to the nucleus during the evolution of multicellular organisms.


Assuntos
Núcleo Celular/genética , Proteínas Fúngicas/genética , Mitocôndrias/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Podospora/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Evolução Biológica , Núcleo Celular/enzimologia , Proteínas Fúngicas/metabolismo , Deleção de Genes , Genes Mitocondriais , Genoma Mitocondrial , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fosforilação Oxidativa , Podospora/enzimologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Transgenes
6.
Biosci Rep ; 44(5)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38687614

RESUMO

The soluble glucose dehydrogenase (sGDH) from Acinetobacter calcoaceticus has been widely studied and is used, in biosensors, to detect the presence of glucose, taking advantage of its high turnover and insensitivity to molecular oxygen. This approach, however, presents two drawbacks: the enzyme has broad substrate specificity (leading to imprecise blood glucose measurements) and shows instability over time (inferior to other oxidizing glucose enzymes). We report the characterization of two sGDH mutants: the single mutant Y343F and the double mutant D143E/Y343F. The mutants present enzyme selectivity and specificity of 1.2 (Y343F) and 5.7 (D143E/Y343F) times higher for glucose compared with that of the wild-type. Crystallographic experiments, designed to characterize these mutants, surprisingly revealed that the prosthetic group PQQ (pyrroloquinoline quinone), essential for the enzymatic activity, is in a cleaved form for both wild-type and mutant structures. We provide evidence suggesting that the sGDH produces H2O2, the level of production depending on the mutation. In addition, spectroscopic experiments allowed us to follow the self-degradation of the prosthetic group and the disappearance of sGDH's glucose oxidation activity. These studies suggest that the enzyme is sensitive to its self-production of H2O2. We show that the premature aging of sGDH can be slowed down by adding catalase to consume the H2O2 produced, allowing the design of a more stable biosensor over time. Our research opens questions about the mechanism of H2O2 production and the physiological role of this activity by sGDH.


Assuntos
Acinetobacter calcoaceticus , Glucose 1-Desidrogenase , Peróxido de Hidrogênio , Acinetobacter calcoaceticus/enzimologia , Acinetobacter calcoaceticus/genética , Peróxido de Hidrogênio/metabolismo , Glucose 1-Desidrogenase/genética , Glucose 1-Desidrogenase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Glucose/metabolismo , Especificidade por Substrato , Cofator PQQ/metabolismo , Cristalografia por Raios X
7.
Biochim Biophys Acta Biomembr ; 1865(1): 184075, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36273540

RESUMO

Bax is a major player in the mitochondrial pathway of apoptosis, by making the Outer Mitochondrial Membrane (OMM) permeable to various apoptogenic factors, including cytochrome c. In order to get further insight into the structure and function of Bax when it is inserted in the OMM, we attempted to reconstitute Bax in nanodiscs. Cell-free protein synthesis in the presence of nanodiscs did not yield Bax-containing nanodiscs, but it provided a simple way to purify full-length Bax without any tag. Purified wild-type Bax (BaxWT) and a constitutively active mutant (BaxP168A) displayed biochemical properties that were in line with previous characterizations following their expression in yeast and human cells followed by their reconstitution into liposomes. Both Bax variants were then reconstituted in nanodiscs. Size exclusion chromatography, dynamic light scattering and transmission electron microscopy showed that nanodiscs formed with BaxP168A were larger than nanodiscs formed with BaxWT. This was consistent with the hypothesis that BaxP168A was reconstituted in nanodiscs as an active oligomer.


Assuntos
Lipossomos , Membranas Mitocondriais , Humanos , Proteína X Associada a bcl-2/metabolismo , Membranas Mitocondriais/metabolismo , Lipossomos/química , Mitocôndrias/metabolismo , Proteínas de Transporte/metabolismo
8.
J Struct Biol ; 177(2): 490-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22119846

RESUMO

The F(1)F(O)-ATP synthase is a rotary molecular nanomotor. F(1) is a chemical motor driven by ATP hydrolysis while F(O) is an electrical motor driven by the proton flow. The two stepping motors are mechanically coupled through a common rotary shaft. Up to now, the three available crystal structures of the F(1)c(10) sub-complex of the yeast F(1)F(O)-ATP synthase were isomorphous and then named yF(1)c(10)(I). In this crystal form, significant interactions of the c(10)-ring with the F(1)-head of neighboring molecules affected the overall conformation of the F(1)-c-ring complex. The symmetry axis of the F(1)-head and the inertia axis of the c-ring were tilted near the interface between the F(1)-central stalk and the c-ring rotor, resulting in an unbalanced machine. We have solved a new crystal form of the F(1)c(10) complex, named yF(1)c(10)(II), inhibited by adenylyl-imidodiphosphate (AMP-PNP) and dicyclohexylcarbodiimide (DCCD), at 6.5Å resolution in which the crystal packing has a weaker influence over the conformation of the F(1)-c-ring complex. yF(1)c(10)(II) provides a model of a more efficient generator. yF(1)c(10)(II) and bovine bF(1)c(8) structures share a common rotor architecture with the inertia center of the F(1)-stator close to the rotor axis.


Assuntos
ATPases Translocadoras de Prótons/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Animais , Bovinos , Cristalografia por Raios X , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Propriedades de Superfície
9.
Proteins ; 80(6): 1658-68, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22467275

RESUMO

The nucleoside diphosphate kinase (Ndk) catalyzes the reversible transfer of the γ-phosphate from nucleoside triphosphate to nucleoside diphosphate. Ndks form hexamers or two types of tetramers made of the same building block, namely, the common dimer. The secondary interfaces of the Type I tetramer found in Myxococcus xanthus Ndk and of the Type II found in Escherichia coli Ndk involve the opposite sides of subunits. Up to now, the few available structures of Ndk from thermophiles were hexameric. Here, we determined the X-ray structures of four crystal forms of the Ndk from the hyperthermophilic bacterium Aquifex aeolicus (Aa-Ndk). Aa-Ndk displays numerous features of thermostable proteins and is made of the common dimer but it is a tetramer of Type I. Indeed, the insertion of three residues in a surface-exposed spiral loop, named the Kpn-loop, leads to the formation of a two-turn α-helix that prevents both hexamer and Type II tetramer assembly. Moreover, the side chain of the cysteine at position 133, which is not present in other Ndk sequences, adopts two alternate conformations. Through the secondary interface, each one forms a disulfide bridge with the equivalent Cys133 from the neighboring subunit. This disulfide bridge was progressively broken during X-ray data collection by radiation damage. Such crosslinks counterbalance the weakness of the common-dimer interface. A 40% decrease of the kinase activity at 60°C after reduction and alkylation of the protein corroborates the structural relevance of the disulfide bridge on the tetramer assembly and enzymatic function.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Dissulfetos/química , Núcleosídeo-Difosfato Quinase/química , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Dissulfetos/efeitos da radiação , Estabilidade Enzimática/efeitos da radiação , Temperatura Alta , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Subunidades Proteicas/química , Alinhamento de Sequência , Sulfatos , Raios X
10.
Commun Biol ; 5(1): 1202, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352173

RESUMO

Structural investigations of amyloid fibrils often rely on heterologous bacterial overexpression of the protein of interest. Due to their inherent hydrophobicity and tendency to aggregate as inclusion bodies, many amyloid proteins are challenging to express in bacterial systems. Cell-free protein expression is a promising alternative to classical bacterial expression to produce hydrophobic proteins and introduce NMR-active isotopes that can improve and speed up the NMR analysis. Here we implement the cell-free synthesis of the functional amyloid prion HET-s(218-289). We present an interesting case where HET-s(218-289) directly assembles into infectious fibril in the cell-free expression mixture without the requirement of denaturation procedures and purification. By introducing tailored 13C and 15N isotopes or CF3 and 13CH2F labels at strategic amino-acid positions, we demonstrate that cell-free synthesized amyloid fibrils are readily amenable to high-resolution magic-angle spinning NMR at sub-milligram quantity.


Assuntos
Amiloide , Príons , Amiloide/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas Amiloidogênicas , Imageamento por Ressonância Magnética
11.
J Biol Chem ; 285(38): 29502-10, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20610387

RESUMO

The F(1)c(10) subcomplex of the yeast F(1)F(0)-ATP synthase includes the membrane rotor part c(10)-ring linked to a catalytic head, (αß)(3), by a central stalk, γδε. The Saccharomyces cerevisiae yF(1)c(10)·ADP subcomplex was crystallized in the presence of Mg·ADP, dicyclohexylcarbodiimide (DCCD), and azide. The structure was solved by molecular replacement using a high resolution model of the yeast F(1) and a bacterial c-ring model with 10 copies of the c-subunit. The structure refined to 3.43-Å resolution displays new features compared with the original yF(1)c(10) and with the yF(1) inhibited by adenylyl imidodiphosphate (AMP-PNP) (yF(1)(I-III)). An ADP molecule was bound in both ß(DP) and ß(TP) catalytic sites. The α(DP)-ß(DP) pair is slightly open and resembles the novel conformation identified in yF(1), whereas the α(TP)-ß(TP) pair is very closed and resembles more a DP pair. yF(1)c(10)·ADP provides a model of a new Mg·ADP-inhibited state of the yeast F(1). As for the original yF(1) and yF(1)c(10) structures, the foot of the central stalk is rotated by ∼40 ° with respect to bovine structures. The assembly of the F(1) central stalk with the F(0) c-ring rotor is mainly provided by electrostatic interactions. On the rotor ring, the essential cGlu(59) carboxylate group is surrounded by hydrophobic residues and is not involved in hydrogen bonding.


Assuntos
Difosfato de Adenosina/química , Magnésio/química , Proteínas de Saccharomyces cerevisiae/química , Azidas/química , Cristalografia por Raios X , Dicicloexilcarbodi-Imida/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
12.
Sci Adv ; 7(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523852

RESUMO

Unbalanced energy partitioning participates in the rise of obesity, a major public health concern in many countries. Increasing basal energy expenditure has been proposed as a strategy to fight obesity yet raises efficiency and safety concerns. Here, we show that mice deficient for a muscle-specific enzyme of very-long-chain fatty acid synthesis display increased basal energy expenditure and protection against high-fat diet-induced obesity. Mechanistically, muscle-specific modulation of the very-long-chain fatty acid pathway was associated with a reduced content of the inner mitochondrial membrane phospholipid cardiolipin and a blunted coupling efficiency between the respiratory chain and adenosine 5'-triphosphate (ATP) synthase, which was restored by cardiolipin enrichment. Our study reveals that selective increase of lipid oxidative capacities in skeletal muscle, through the cardiolipin-dependent lowering of mitochondrial ATP production, provides an effective option against obesity at the whole-body level.

13.
Life (Basel) ; 10(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971864

RESUMO

With the advent of next generation sequencing, the list of mitochondrial DNA (mtDNA) mutations identified in patients rapidly and continuously expands. They are frequently found in a limited number of cases, sometimes a single individual (as with the case herein reported) and in heterogeneous genetic backgrounds (heteroplasmy), which makes it difficult to conclude about their pathogenicity and functional consequences. As an organism amenable to mitochondrial DNA manipulation, able to survive by fermentation to loss-of-function mtDNA mutations, and where heteroplasmy is unstable, Saccharomyces cerevisiae is an excellent model for investigating novel human mtDNA variants, in isolation and in a controlled genetic context. We herein report the identification of a novel variant in mitochondrial ATP6 gene, m.8909T>C. It was found in combination with the well-known pathogenic m.3243A>G mutation in mt-tRNALeu. We show that an equivalent of the m.8909T>C mutation compromises yeast adenosine tri-phosphate (ATP) synthase assembly/stability and reduces the rate of mitochondrial ATP synthesis by 20-30% compared to wild type yeast. Other previously reported ATP6 mutations with a well-established pathogenicity (like m.8993T>C and m.9176T>C) were shown to have similar effects on yeast ATP synthase. It can be inferred that alone the m.8909T>C variant has the potential to compromise human health.

14.
Genetics ; 178(2): 815-24, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18245832

RESUMO

Guanylic nucleotide biosynthesis is a conserved and highly regulated process. Drugs reducing GMP synthesis affect the immunological response and mutations enabling guanylic-derivative recycling lead to severe mental retardation. While the effects of decreased GMP synthesis have been well documented, the consequences of GMP overproduction in eukaryotes are poorly understood. In this work, we selected and characterized several mutations making yeast hypoxanthine-guanine phosphoribosyltransferase insensitive to feedback inhibition by GMP. In these mutants, accumulation of guanylic nucleotides can be triggered by addition of extracellular guanine. We show that such an accumulation is highly toxic for yeast cells and results in arrest of proliferation and massive cell death. This growth defect could be partially suppressed by overexpression of Rfx1p, a transcriptional repressor of the DNA damage response pathway. Importantly, neither guanylic nucleotide toxicity nor its suppression by Rfx1p was associated with an alteration of forward mutation frequency.


Assuntos
Regulação Fúngica da Expressão Gênica , Genes Letais , Nucleotídeos de Guanina/metabolismo , Hipoxantina Fosforribosiltransferase/genética , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Primers do DNA , Escherichia coli/genética , Nucleotídeos de Guanina/biossíntese , Guanosina Monofosfato/metabolismo , Guanosina Monofosfato/farmacologia , Hipoxantina Fosforribosiltransferase/metabolismo , Mutagênese , Plasmídeos , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/enzimologia
15.
J Bioenerg Biomembr ; 41(4): 349-60, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19821035

RESUMO

Loss of stability and integrity of large membrane protein complexes as well as their aggregation in a non-lipidic environment are the major bottlenecks to their structural studies. We have tested C(12)H(25)-S-poly-Tris-(hydroxymethyl)acrylamidomethane (H(12)-TAC) among many other detergents for extracting the yeast F(1)F(0) ATP-synthase. H(12)-TAC was found to be a very efficient detergent for removing the enzyme from mitochondrial membranes without altering its sensitivity towards specific ATP-synthase inhibitors. This extracted enzyme was then solubilized by either dodecyl maltoside (DDM), H(12)-TAC or fluorinated surfactants such as C(2)H(5)-C(6)F(12)-C(2)H(4)-S-poly-Tris-(hydroxymethyl)acrylamidomethane (H(2)F(6)-TAC) or C(6)F(13)-C(2)H(4)-S-poly-Tris-(hydroxymethyl)acrylamidomethane (F(6)-TAC), two surfactants exhibiting a comparable polar head to H(12)-TAC but bearing a fluorinated hydrophobic tail. Preparations from enzymes purified in the presence of H(12)-TAC were found to be more adapted for AFM imaging than ATP-synthase purified with DDM. Keeping H(12)-TAC during the Ni-NTA IMAC purification step or replacing it by DDM at low concentrations did not however allow preserving enzyme activity, while fluorinated surfactants H(2)F(6)-TAC and F(6)-TAC were found to enhance enzyme stability and integrity as indicated by sensitivity towards inhibitors. ATPase specific activity was higher with F(6)-TAC than with H(2)F(6)-TAC. When enzymes were mixed with egg phosphatidylcholine, ATP-synthases purified in the presence of H(2)F(6)-TAC or F(6)-TAC were more stable upon time than the DDM purified enzyme. Furthermore, in the presence of lipids, an activation of ATP-synthases was observed that was transitory for enzymes purified with DDM, but lasted for weeks for ATP-synthases isolated in the presence of molecules with Tris polyalcoholic moieties. Relipidated enzymes prepared with fluorinated surfactants remained highly sensitive towards inhibitors, even after 6 weeks.


Assuntos
Acrilamidas/química , Fracionamento Químico/métodos , Membranas Mitocondriais/química , Membranas Mitocondriais/enzimologia , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/isolamento & purificação , Tensoativos/química , Flúor/química , Hidrogênio/química
16.
Biol Cell ; 100(10): 591-601, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18447829

RESUMO

BACKGROUND INFORMATION: The yeast mitochondrial F(1)F(o)-ATP synthase is a large complex of 600 kDa that uses the proton electrochemical gradient generated by the respiratory chain to catalyse ATP synthesis from ADP and P(i). For a large range of organisms, it has been shown that mitochondrial ATP synthase adopts oligomeric structures. Moreover, several studies have suggested that a link exists between ATP synthase and mitochondrial morphology. RESULTS AND DISCUSSION: In order to understand the link between ATP synthase oligomerization and mitochondrial morphology, more information is needed on the supramolecular organization of this enzyme within the inner mitochondrial membrane. We have conducted an electron microscopy study on wild-type yeast mitochondria at different levels of organization from spheroplast to isolated ATP synthase complex. Using electron tomography, freeze-fracture, negative staining and image processing, we show that cristae form a network of lamellae, on which ATP synthase dimers assemble in linear and regular arrays of oligomers. CONCLUSIONS: Our results shed new light on the supramolecular organization of the F(1)F(o)-ATP synthase and its potential role in mitochondrial morphology.


Assuntos
Mitocôndrias/enzimologia , Proteínas Mitocondriais/química , ATPases Mitocondriais Próton-Translocadoras/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Microscopia Crioeletrônica , Dimerização , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Moleculares , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Esferoplastos/enzimologia , Esferoplastos/ultraestrutura
17.
J Mol Biol ; 365(1): 146-59, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17046787

RESUMO

The striking feature of carbohydrates is their constitutional, conformational and configurational diversity. Biology has harnessed this diversity and manipulates carbohydrate residues in a variety of ways, one of which is epimerization. RmlC catalyzes the epimerization of the C3' and C5' positions of dTDP-6-deoxy-D-xylo-4-hexulose, forming dTDP-6-deoxy-L-lyxo-4-hexulose. RmlC is the third enzyme of the rhamnose pathway, and represents a validated anti-bacterial drug target. Although several structures of the enzyme have been reported, the mechanism and the nature of the intermediates have remained obscure. Despite its relatively small size (22 kDa), RmlC catalyzes four stereospecific proton transfers and the substrate undergoes a major conformational change during the course of the transformation. Here we report the structure of RmlC from several organisms in complex with product and product mimics. We have probed site-directed mutants by assay and by deuterium exchange. The combination of structural and biochemical data has allowed us to assign key residues and identify the conformation of the carbohydrate during turnover. Clear knowledge of the chemical structure of RmlC reaction intermediates may offer new opportunities for rational drug design.


Assuntos
Carboidratos Epimerases/química , Açúcares de Nucleosídeo Difosfato/metabolismo , Nucleotídeos de Timina/metabolismo , Proteínas de Bactérias/química , Configuração de Carboidratos , Carboidratos Epimerases/isolamento & purificação , Carboidratos Epimerases/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Açúcares de Nucleosídeo Difosfato/química , Pseudomonas aeruginosa/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ramnose/biossíntese , Nucleotídeos de Timina/química
18.
Front Physiol ; 9: 1243, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233414

RESUMO

Rotary ATPases are a family of enzymes that are thought of as molecular nanomotors and are classified in three types: F, A, and V-type ATPases. Two members (F and A-type) can synthesize and hydrolyze ATP, depending on the energetic needs of the cell, while the V-type enzyme exhibits only a hydrolytic activity. The overall architecture of all these enzymes is conserved and three main sectors are distinguished: a catalytic core, a rotor and a stator or peripheral stalk. The peripheral stalks of the A and V-types are highly conserved in both structure and function, however, the F-type peripheral stalks have divergent structures. Furthermore, the peripheral stalk has other roles beyond its stator function, as evidenced by several biochemical and recent structural studies. This review describes the information regarding the organization of the peripheral stalk components of F, A, and V-ATPases, highlighting the key differences between the studied enzymes, as well as the different processes in which the structure is involved.

19.
Proteins ; 67(3): 755-65, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17330300

RESUMO

Nucleoside diphosphate kinase (NDPK) catalyzes the transfer of gamma-phosphate from nucleoside triphosphates to nucleoside diphosphates. The subunit folding and the dimeric basic structural unit are remarkably the same for available structures but, depending on species, dimers self-associate to form hexamers or tetramers. The crystal structure of the Escherichia coli NDPK reveals a new tetrameric quaternary structure for this protein family. The two tetramers differ by the relative orientation of interacting dimers, which face either the convex or the concave side of their central sheet as in either Myxococcus xanthus (type I) or E. coli (type II), respectively. In the type II tetramer, the subunits interact by a new interface harboring a zone called the Kpn loop as in hexamers, but by the opposite face of this loop. The evolutionary conservation of the interface residues indicates that this new quaternary structure seems to be the most frequent assembly mode in bacterial tetrameric NDP kinases.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Núcleosídeo-Difosfato Quinase/química , Sequência de Aminoácidos , Cristalografia por Raios X/métodos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Núcleosídeo-Difosfato Quinase/genética , Núcleosídeo-Difosfato Quinase/metabolismo , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
20.
Methods Mol Biol ; 1635: 1-25, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28755361

RESUMO

TSPO is a 18 kDa membrane protein that exists in mammalian as two isoforms 1 and 2. They are involved in different functions and are located in different membranes. TSPO1 is mainly located in outer mitochondrial membrane, whereas TSPO2 is encountered in plasma membrane of red blood cells. Determination of their structures is a milestone to understand their function. Their natural abundance is not sufficient to get large amounts usually required for structural studies. We described heterologous overexpression in both bacterial and cell-free system and purification on immobilized-metal affinity chromatography (IMAC) of both proteins. Using the same vector, TSPO1 is mostly recovered in bacterial inclusion bodies whereas TSPO2 is found in both bacterial cytosol and inclusion bodies, but in low amounts. Cell-free expression was the best system to overexpress pure TSPO2.


Assuntos
Escherichia coli/genética , Receptores de GABA/genética , Proteínas Recombinantes/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Sistema Livre de Células , Citosol/metabolismo , Escherichia coli/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Camundongos , Engenharia de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de GABA/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa