Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Ecol ; 32(8): 1817-1831, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35000240

RESUMO

Changes in biodiversity may impact infectious disease transmission through multiple mechanisms. We explored the impact of biodiversity changes on the transmission of Amazonian leishmaniases, a group of wild zoonoses transmitted by phlebotomine sand flies (Psychodidae), which represent an important health burden in a region where biodiversity is both rich and threatened. Using molecular analyses of sand fly pools and blood-fed dipterans, we characterized the disease system in forest sites in French Guiana undergoing different levels of human-induced disturbance. We show that the prevalence of Leishmania parasites in sand flies correlates positively with the relative abundance of mammal species known as Leishmania reservoirs. In addition, Leishmania reservoirs tend to dominate in less diverse mammal communities, in accordance with the dilution effect hypothesis. This results in a negative relationship between Leishmania prevalence and mammal diversity. On the other hand, higher mammal diversity is associated with higher sand fly density, possibly because more diverse mammal communities harbor higher biomass and more abundant feeding resources for sand flies, although more research is needed to identify the factors that shape sand fly communities. As a consequence of these antagonistic effects, decreased mammal diversity comes with an increase of parasite prevalence in sand flies, but has no detectable impact on the density of infected sand flies. These results represent additional evidence that biodiversity changes may simultaneously dilute and amplify vector-borne disease transmission through different mechanisms that need to be better understood before drawing generalities on the biodiversity-disease relationship.


Assuntos
Leishmania , Leishmaniose , Psychodidae , Animais , Humanos , Leishmania/genética , Biodiversidade , Zoonoses , Mamíferos
2.
Med Vet Entomol ; 36(4): 486-495, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35762523

RESUMO

The urban mosquito species Aedes aegypti is the main vector of arboviruses worldwide. Mosquito control with insecticides is the most prevalent method for preventing transmission in the absence of effective vaccines and available treatments; however, the extensive use of insecticides has led to the development of resistance in mosquito populations throughout the world, and the number of epidemics caused by arboviruses has increased. Three mosquito lines with different resistance profiles to deltamethrin were isolated in French Guiana, including one with the I1016 knock-down resistant allele. Significant differences were observed in the cumulative proportion of mosquitoes with a disseminated chikungunya virus infection over time across these lines. In addition, some genes related to resistance (CYP6BB2, CYP6N12, GST2, trypsin) were variably overexpressed in the midgut at 7 days after an infectious bloodmeal in these three lines. Our work shows that vector competence for chikungunya virus varied between Ae. aegypti laboratory lines with different deltamethrin resistance profiles. More accurate verification of the functional association between insecticide resistance and vector competence remains to be demonstrated.


Assuntos
Aedes , Arbovírus , Vírus Chikungunya , Inseticidas , Animais , Inseticidas/farmacologia , Mosquitos Vetores , Resistência a Inseticidas/genética
3.
Malar J ; 19(1): 348, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993669

RESUMO

BACKGROUND: Deforestation and land use change is widespread in Madagascar, altering local ecosystems and creating opportunities for disease vectors, such as the Anopheles mosquito, to proliferate and more easily reach vulnerable, rural populations. Knowledge of risk factors associated with malaria infections is growing globally, but these associations remain understudied across Madagascar's diverse ecosystems experiencing rapid environmental change. This study aims to uncover socioeconomic, demographic, and ecological risk factors for malaria infection across regions through analysis of a large, cross-sectional dataset. METHODS: The objectives were to assess (1) the ecological correlates of malaria vector breeding through larval surveys, and (2) the socioeconomic, demographic, and ecological risk factors for malaria infection in four ecologically distinct regions of rural Madagascar. Risk factors were determined using multilevel models for the four regions included in the study. RESULTS: The presence of aquatic agriculture (both within and surrounding communities) is the strongest predictive factor of habitats containing Anopheles larvae across all regions. Ecological and socioeconomic risk factors for malaria infection vary dramatically across study regions and range in their complexity. CONCLUSIONS: Risk factors for malaria transmission differ dramatically across regions of Madagascar. These results may help stratifying current malaria control efforts in Madagascar beyond the scope of existing interventions.


Assuntos
Distribuição Animal , Anopheles/fisiologia , Malária/epidemiologia , Mosquitos Vetores/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Pré-Escolar , Estudos Transversais , Demografia , Ecossistema , Feminino , Humanos , Lactente , Madagáscar/epidemiologia , Malária/parasitologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Fatores Socioeconômicos , Adulto Jovem
4.
Genome Res ; 25(9): 1347-59, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26206155

RESUMO

The capacity of mosquitoes to resist insecticides threatens the control of diseases such as dengue and malaria. Until alternative control tools are implemented, characterizing resistance mechanisms is crucial for managing resistance in natural populations. Insecticide biodegradation by detoxification enzymes is a common resistance mechanism; however, the genomic changes underlying this mechanism have rarely been identified, precluding individual resistance genotyping. In particular, the role of copy number variations (CNVs) and polymorphisms of detoxification enzymes have never been investigated at the genome level, although they can represent robust markers of metabolic resistance. In this context, we combined target enrichment with high-throughput sequencing for conducting the first comprehensive screening of gene amplifications and polymorphisms associated with insecticide resistance in mosquitoes. More than 760 candidate genes were captured and deep sequenced in several populations of the dengue mosquito Ae. aegypti displaying distinct genetic backgrounds and contrasted resistance levels to the insecticide deltamethrin. CNV analysis identified 41 gene amplifications associated with resistance, most affecting cytochrome P450s overtranscribed in resistant populations. Polymorphism analysis detected more than 30,000 variants and strong selection footprints in specific genomic regions. Combining Bayesian and allele frequency filtering approaches identified 55 nonsynonymous variants strongly associated with resistance. Both CNVs and polymorphisms were conserved within regions but differed across continents, confirming that genomic changes underlying metabolic resistance to insecticides are not universal. By identifying novel DNA markers of insecticide resistance, this study opens the way for tracking down metabolic changes developed by mosquitoes to resist insecticides within and among populations.


Assuntos
Aedes/efeitos dos fármacos , Aedes/genética , Genoma de Inseto , Genômica , Resistência a Inseticidas , Animais , Análise por Conglomerados , Amplificação de Genes , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Inseticidas/farmacologia , Dose Letal Mediana , Família Multigênica , Mutação , Nitrilas/farmacologia , Polimorfismo Genético , Piretrinas/farmacologia , Reprodutibilidade dos Testes , Transcrição Gênica
5.
J Nat Prod ; 80(2): 384-390, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28186749

RESUMO

Four new sesquiterpene alkaloids (1-4) with a ß-dihydroagrofuran skeleton and a new triterpenoid (5) were isolated from an ethyl acetate extract of Maytenus oblongata stems. Their structures were elucidated using 1D and 2D NMR spectroscopy as well as MS and ECD experiments. The M. oblongata stem EtOAc extract and the pure compounds isolated were tested for larvicidal activity against Aedes aegypti under laboratory conditions, and compounds 2 and 3 were found to be active.


Assuntos
Aedes/efeitos dos fármacos , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Larva/efeitos dos fármacos , Maytenus/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Triterpenos/isolamento & purificação , Triterpenos/farmacologia , Alcaloides/química , Animais , Guiana Francesa , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Caules de Planta/química , Sesquiterpenos/química , Triterpenos/química
6.
Malar J ; 15: 35, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26801629

RESUMO

BACKGROUND: In December 2010, a Plasmodium vivax malaria outbreak occurred among French forces involved in a mission to control illegal gold mining in French Guiana. The findings of epidemiological and entomological investigations conducted after this outbreak are presented here. METHODS: Data related to malaria cases reported to the French armed forces epidemiological surveillance system were collected during the epidemic period from December 2010 to April 2011. A retrospective cohort study was conducted to identify presumed contamination sites. Anopheles mosquitoes were sampled at the identified sites using Mosquito Magnet and CDC light traps. Specimens were identified morphologically and confirmed using molecular methods (sequencing of ITS2 gene and/or barcoding). Anopheles infections with Plasmodium falciparum and P. vivax were tested by both enzyme-linked immunosorbent assay and real-time PCR. RESULTS: Seventy-two P. vivax malaria cases were reported (three were mixed P. falciparum/P. vivax infections), leading to a global attack rate of 26.5% (72/272). Lack of compliance with vector control measures and doxycycline chemoprophylaxis was reported by patients. Two illegal gold mining sites located in remote areas in the primary forest were identified as places of contamination. In all, 595 Anopheles females were caught and 528 specimens were formally identified: 305 Anopheles darlingi, 145 Anopheles nuneztovari s.l., 63 Anopheles marajoara and 15 Anopheles triannulatus s.l. Three An. darlingi were infected by P. falciparum (infection rate: 1.1%) and four An. marajoara by P. vivax (infection rate: 6.4%). DISCUSSION: The main drivers of the outbreak were the lack of adherence by military personnel to malaria prevention measures and the high level of malaria transmission at illegal gold mining sites. Anopheles marajoara was clearly implicated in malaria transmission for the first time in French Guiana. The high infection rates observed confirm that illegal gold mining sites must be considered as high level malaria transmission areas in the territory. CONCLUSIONS: Illegal gold mining activities are challenging the control of malaria in French Guiana. Collaboration with neighbouring countries is necessary to take into account mobile populations such as gold miners. Malaria control strategies in the French armed forces must be adapted to P. vivax malaria and sylvatic Anopheles species.


Assuntos
Anopheles/parasitologia , Malária/epidemiologia , Malária/transmissão , Mineração , Animais , Feminino , Guiana Francesa/epidemiologia , Ouro , Humanos , Insetos Vetores/parasitologia , Masculino , Estudos Retrospectivos
7.
BMC Infect Dis ; 16: 318, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27390932

RESUMO

BACKGROUND: Dengue viruses (DENV) are comprised in four related serotypes (DENV-1 to 4) and are critically important arboviral pathogens affecting human populations in the tropics. South American countries have seen the reemergence of DENV since the 1970's associated with the progressive re-infestation by the mosquito vector, Aedes aegypti. In French Guiana, DENV is now endemic with the co-circulation of different serotypes resulting in viral epidemics. Between 2009 and 2010, a predominant serotype change occurred from DENV-1 to DENV-4 suggesting a competitive displacement. The aim of the present study was to evaluate the potential role of the mosquito in the selection of the new epidemic serotype. METHODS: To test this hypothesis of competitive displacement of one serotype by another in the mosquito vector, we performed mono- and co-infections of local Ae. aegypti collected during the inter-epidemic period with both viral autochthonous epidemic serotypes and compared infection, dissemination and transmission rates. We performed oral artificial infections of F1 populations in BSL-3 conditions and analyzed infection, dissemination and transmission rates. RESULTS: When two populations of Ae. aegypti from French Guiana were infected with either serotype, no significant differences in dissemination and transmission were observed between DENV-1 and DENV-4. However, in co-infection experiments, a strong competitive advantage for DENV-4 was seen at the midgut level leading to a much higher dissemination of this serotype. Furthermore only DENV-4 was present in Ae. aegypti saliva and therefore able to be transmitted. CONCLUSIONS: In an endemic context, mosquito vectors may be infected by several DENV serotypes. Our results suggest a possible competition between serotypes at the midgut level in co-infected mosquitoes leading to a drastically different transmission potential and, in this case, favoring the competitive displacement of DENV-1 by DENV-4. This phenomenon was observed despite a similar replicative fitness in mono-infections conditions.


Assuntos
Aedes/virologia , Coinfecção/transmissão , Vírus da Dengue/patogenicidade , Insetos Vetores/virologia , Animais , Coinfecção/virologia , Dengue/epidemiologia , Vírus da Dengue/imunologia , Guiana Francesa , Humanos , Sorogrupo , América do Sul , Replicação Viral/fisiologia
8.
Mem Inst Oswaldo Cruz ; 111(12): 750-756, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27982304

RESUMO

Little is known about the Anopheles species of the coastal areas of French Guiana, or their spatiotemporal distribution or environmental determinants. The present study aimed to (1) document the distribution of Anopheles fauna in the coastal area around Cayenne, and (2) investigate the use of remotely sensed land cover data as proxies of Anopheles presence. To characterise the Anopheles fauna, we combined the findings of two entomological surveys that were conducted during the period 2007-2009 and in 2014 at 37 sites. Satellite imagery data were processed to extract land cover variables potentially related to Anopheles ecology. Based on these data, a methodology was formed to estimate a statistical predictive model of the spatial-seasonal variations in the presence of Anopheles in the Cayenne region. Two Anopheles species, known as main malaria vectors in South America, were identified, including the more dominant An. aquasalis near town and rural sites, and An. darlingi only found in inland sites. Furthermore, a cross-validated model of An. aquasalis presence that integrated marsh and forest surface area was extrapolated to generate predictive maps. The present study supports the use of satellite imagery by health authorities for the surveillance of malaria vectors and planning of control strategies.


Assuntos
Anopheles/classificação , Insetos Vetores/classificação , Animais , Guiana Francesa , Malária/transmissão , Densidade Demográfica , Imagens de Satélites , Estações do Ano , Análise Espaço-Temporal
9.
Mem Inst Oswaldo Cruz ; 111(9): 561-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27653361

RESUMO

In French Guiana, malaria vector control and prevention relies on indoor residual spraying and distribution of long lasting insecticidal nets. These measures are based on solid epidemiological evidence but reveal a poor understanding of the vector. The current study investigated the behaviour of both vectors and humans in relation to the ongoing prevention strategies. In 2012 and 2013, Anopheles mosquitoes were sampled outdoors at different seasons and in various time slots. The collected mosquitoes were identified and screened for Plasmodium infection. Data on human behaviour and malaria episodes were obtained from an interview. A total of 3,135 Anopheles mosquitoes were collected, of which Anopheles darlingi was the predominant species (96.2%). For the December 2012-February 2013 period, the Plasmodium vivax infection rate for An. darlingi was 7.8%, and the entomological inoculation rate was 35.7 infective bites per person per three-month span. In spite of high bednet usage (95.7%) in 2012 and 2013, 52.2% and 37.0% of the participants, respectively, had at least one malaria episode. An. darlingi displayed heterogeneous biting behaviour that peaked between 20:30 and 22:30; however, 27.6% of the inhabitants were not yet protected by bednets by 21:30. The use of additional individual and collective protective measures is required to limit exposure to infective mosquito bites and reduce vector densities.


Assuntos
Anopheles/fisiologia , Mordeduras e Picadas de Insetos , Insetos Vetores/fisiologia , Animais , Anopheles/classificação , Anopheles/parasitologia , Feminino , Florestas , Guiana Francesa , Humanos , Insetos Vetores/classificação , Insetos Vetores/parasitologia , Malária Falciparum/transmissão , Malária Vivax/transmissão , Densidade Demográfica , Estações do Ano , Especificidade da Espécie
10.
J Am Mosq Control Assoc ; 32(4): 337-340, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28206865

RESUMO

Research on natural insecticides has intensified with the spread of resistance to chemicals among insects, particularly disease vectors. To evaluate compounds, the World Health Organization (WHO) has published standardized procedures. However, those may be excessively compound-consuming when it comes to assessing the activity of natural extracts and pure compounds isolated in limited amount. As part of our work on the discovery of new mosquito larvicides from Amazonian plants, we developed a compound-saving assay in 5-ml glass tubes instead of WHO larval 100-ml cups. Comparing activity of synthetic and natural chemicals validated the glass tube assay. Raw data, lethal doses that kill 50% (LD50) and 90% (LD90) at 24 and 48 h, were highly correlated (0.68 < R2 < 0.96, P < 0.001, Pearson test) between cups and tubes. It was also established that 10 tubes (N = 50 larvae) provided the same level of sensitivity as 20 tubes (N = 100). This method proved suitable for rapid screening of natural extracts and molecules, identifying active compounds using 10 times less material than in the WHO protocol.


Assuntos
Aedes/efeitos dos fármacos , Inseticidas/toxicidade , Controle de Mosquitos/métodos , Extratos Vegetais/toxicidade , Aedes/crescimento & desenvolvimento , Animais , Larva/efeitos dos fármacos , Extratos Vegetais/química
11.
J Virol ; 88(11): 6294-306, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24672026

RESUMO

UNLABELLED: Chikungunya virus (CHIKV) causes a major public health problem. In 2004, CHIKV began an unprecedented global expansion and has been responsible for epidemics in Africa, Asia, islands in the Indian Ocean region, and surprisingly, in temperate regions, such as Europe. Intriguingly, no local transmission of chikungunya virus (CHIKV) had been reported in the Americas until recently, despite the presence of vectors and annually reported imported cases. Here, we assessed the vector competence of 35 American Aedes aegypti and Aedes albopictus mosquito populations for three CHIKV genotypes. We also compared the number of viral particles of different CHIKV strains in mosquito saliva at two different times postinfection. Primarily, viral dissemination rates were high for all mosquito populations irrespective of the tested CHIKV isolate. In contrast, differences in transmission efficiency (TE) were underlined in populations of both species through the Americas, suggesting the role of salivary glands in selecting CHIKV for highly efficient transmission. Nonetheless, both mosquito species were capable of transmitting all three CHIKV genotypes, and TE reached alarming rates as high as 83.3% and 96.7% in A. aegypti and A. albopictus populations, respectively. A. albopictus better transmitted the epidemic mutant strain CHIKV_0621 of the East-Central-South African (ECSA) genotype than did A. aegypti, whereas the latter species was more capable of transmitting the original ECSA CHIKV_115 strain and also the Asian genotype CHIKV_NC. Therefore, a high risk of establishment and spread of CHIKV throughout the tropical, subtropical, and even temperate regions of the Americas is more real than ever. IMPORTANCE: Until recently, the Americas had never reported chikungunya (CHIK) autochthonous transmission despite its global expansion beginning in 2004. Large regions of the continent are highly infested with Aedes aegypti and Aedes albopictus mosquitoes, and millions of dengue (DEN) cases are annually recorded. Indeed, DEN virus and CHIK virus (CHIKV) share the same vectors. Due to a recent CHIK outbreak affecting Caribbean islands, the need for a Pan-American evaluation of vector competence was compelling as a key parameter in assessing the epidemic risk. We demonstrated for the first time that A. aegypti and A. albopictus populations throughout the continent are highly competent to transmit CHIK irrespective of the viral genotypes tested. The risk of CHIK spreading throughout the tropical, subtropical, and even temperate regions of the Americas is more than ever a reality. In light of our results, local authorities should immediately pursue and reinforce epidemiological and entomological surveillance to avoid a severe epidemic.


Assuntos
Aedes/virologia , Infecções por Alphavirus/transmissão , Vírus Chikungunya/genética , Insetos Vetores/virologia , América , Animais , Febre de Chikungunya , Saliva/virologia , Especificidade da Espécie , Estatísticas não Paramétricas
12.
J Med Entomol ; 52(5): 770-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26336249

RESUMO

The incredible mosquito species diversity in the Neotropics can provoke major confusion during vector control programs when precise identification is needed. This is especially true in French Guiana where studies on mosquito diversity practically ceased 35 yr ago. In order to fill this gap, we propose here an updated and comprehensive checklist of the mosquitoes of French Guiana, reflecting the latest changes in classification and geographical distribution and the recognition of current or erroneous synonymies. This work was undertaken in order to help ongoing and future research on mosquitoes in a broad range of disciplines such as ecology, biogeography, and medical entomology. Thirty-two valid species cited in older lists have been removed, and 24 species have been added including 12 species (comprising two new genera and three new subgenera) reported from French Guiana for the first time. New records are from collections conducted on various phytotelmata in French Guiana and include the following species: Onirion sp. cf Harbach and Peyton (2000), Sabethes (Peytonulus) hadrognathus Harbach, Sabethes (Peytonulus) paradoxus Harbach, Sabethes (Peytonulus) soperi Lane and Cerqueira, Sabethes (Sabethinus) idiogenes Harbach, Sabethes (Sabethes) quasicyaneus Peryassú, Runchomyia (Ctenogoeldia) magna (Theobald), Wyeomyia (Caenomyiella) sp. cf Harbach and Peyton (1990), Wyeomyia (Dendromyia) ypsipola Dyar, Wyeomyia (Hystatomyia) lamellata (Bonne-Wepster and Bonne), Wyeomyia (Miamyia) oblita (Lutz), and Toxorhynchites (Lynchiella) guadeloupensis (Dyar and Knab). At this time, the mosquitoes of French Guiana are represented by 235 species distributed across 22 genera, nine tribes, and two subfamilies.


Assuntos
Distribuição Animal , Culicidae/classificação , Culicidae/fisiologia , Animais , Feminino , Guiana Francesa , Masculino
13.
Malar J ; 13: 384, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25260354

RESUMO

BACKGROUND: In French Guiana, Mosquito Magnet® Liberty Plus trap baited with octenol (MMoct) has been proposed for sampling Anopheles darlingi after comparison with CDC light trap and Human landing catch (HLC). However, other available lures were not tested. The current study compared MMoct and MM baited with Lurex™ (MMlur) to HLC, and analysed entomological data from MMoct collection with malaria cases to facilitate malaria surveillance. METHODS: Two independent experiments were conducted during 2012 and 2013 in Saint-Georges town, French Guiana. The first experiment used Latin square design to compare MMoct and MMlur to HLC between 18:30 to 22:30 and 05:00 to 07:00. Parity rate was determined for An. darlingi from each sampling system. In the second experiment, a 24:00 hour collection was done for four consecutive days during the first week of each month and every four days for the rest of the month using MMoct. Portion of the 24 hour collection was dissected for parity rate. All anophelines were screened for Plasmodium infection by PCR. Data for number of malaria cases was analysed for association with density of An. darlingi. RESULTS: In the first experiment, 3,721 anopheline mosquitoes were collected over 21 nights. Of these, 95.7% was identified morphologically to five species and An. darlingi contributed 98.4%, mainly from HLC (75.1%, CI 95% [73.2-77.0]) than MMoct (14.1%, CI 95% [12.6-15.7]) and MMlur (10.8%, CI 95% [9.4-12.2]). Species richness was highest in HLC meanwhile species diversity index was greatest in MMoct. MMoct collected more parous An. darlingi than HLC (p<0.0001) and MMlur (p=0.0021). The second experiment amounted to 2035 females, 60.8% belonging to 10 species. Anopheles darlingi constituted 85.0% of the species and had parity rate of 52.3%. Specimens were uninfected with Plasmodium. Density of An. darlingi best correlated with malaria cases observed six weeks later (p=0.0016; r=0.4774). CONCLUSION: Though MMoct and MMlur performed well in sampling An. darlingi, MMoct captured more species and, therefore, would be useful for surveillance. Even if it collected mostly parous mosquitoes, MMoct proved useful in collecting entomological data required for predicting malaria emergence. It is a potential replacement for HLC.


Assuntos
Anopheles , Malária/transmissão , Controle de Mosquitos/instrumentação , Octanóis , Animais , Monitoramento Epidemiológico , Feminino , Guiana Francesa/epidemiologia , Humanos , Modelos Lineares , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos/métodos
14.
Mem Inst Oswaldo Cruz ; 109(5): 525-33, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25184998

RESUMO

In a climate of growing concern that Plasmodium falciparum may be developing a drug resistance to artemisinin derivatives in the Guiana Shield, this review details our current knowledge of malaria and control strategy in one part of the Shield, French Guiana. Local epidemiology, test-treat-track strategy, the state of parasite drug resistance and vector control measures are summarised. Current issues in terms of mobile populations and legislative limitations are also discussed.


Assuntos
Antimaláricos/administração & dosagem , Malária/epidemiologia , Animais , Anopheles , Resistência a Medicamentos , Guiana Francesa/epidemiologia , Humanos , Insetos Vetores , Malária/tratamento farmacológico , Malária/transmissão
15.
Am J Trop Med Hyg ; 110(2): 311-319, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38167314

RESUMO

Since ancient times, seaports have been the hot spots for plague introduction into free countries. Infected ship rats reached new areas, and epizootics occurred prior to human infection via flea bites. Beginning in the 1920s/1930s, rodent and flea surveillance was carried out as part of plague hazard management in seaports of the world. Nowadays, such activity is not done regularly. In the southwestern Indian Ocean (SWIO) region, plague surveillance is of great importance given plague endemicity in Madagascar and thus the incurred risk for neighboring islands. This study reports animal-based surveillance aimed at identifying fleas and their small mammal hosts in SWIO seaports as well as Yersinia pestis detection. Small mammal trappings were performed in five main seaports of Madagascar (Toamasina and Mahajanga), Mauritius (Port Louis), and the Union of Comoros (Moroni and Mutsamudu). Mammals were euthanized and their fleas collected and morphologically identified before Y. pestis detection. In total, 145 mammals were trapped: the brown rat Rattus norvegicus (76.5%), the black rat Rattus rattus (8.3%), and the Asian house shrew Suncus murinus (15.2%). Fur brushing allowed collection of 1,596 fleas exclusively identified as Xenopsylla cheopis. All tested fleas were negative for Y. pestis DNA. This study shows that both well-known plague mammal hosts and flea vectors occur in SWIO seaports. It also highlights the necessity of carrying out regular animal-based surveillance for plague hazard management in this region.


Assuntos
Infestações por Pulgas , Peste , Sifonápteros , Yersinia pestis , Humanos , Ratos , Animais , Peste/epidemiologia , Peste/veterinária , Oceano Índico , Insetos Vetores/genética , Infestações por Pulgas/epidemiologia , Infestações por Pulgas/veterinária , Roedores
16.
PLoS Negl Trop Dis ; 18(3): e0012036, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452122

RESUMO

Plague is a flea-borne fatal disease caused by the bacterium Yersinia pestis, which persists in rural Madagascar. Although fleas parasitizing rats are considered the primary vectors of Y. pestis, the human flea, Pulex irritans, is abundant in human habitations in Madagascar, and has been found naturally infected by the plague bacterium during outbreaks. While P. irritans may therefore play a role in plague transmission if present in plague endemic areas, the factors associated with infestation and human exposure within such regions are little explored. To determine the socio-ecological risk factors associated with P. irritans infestation in rural households in plague-endemic areas of Madagascar, we used a mixed-methods approach, integrating results from P. irritans sampling, a household survey instrument, and an observational checklist. Using previously published vectorial capacity data, the minimal P. irritans index required for interhuman bubonic plague transmission was modeled to determine whether household infestations were enough to pose a plague transmission risk. Socio-ecological risk factors associated with a high P. irritans index were then identified for enrolled households using generalized linear models. Household flea abundance was also modeled using the same set of predictors. A high P. irritans index occurred in approximately one third of households and was primarily associated with having a traditional dirt floor covered with a plant fiber mat. Interventions targeting home improvement and livestock housing management may alleviate flea abundance and plague risk in rural villages experiencing high P. irritans infestation. As plague-control resources are limited in developing countries such as Madagascar, identifying the household parameters and human behaviors favoring flea abundance, such as those identified in this study, are key to developing preventive measures that can be implemented at the community level.


Assuntos
Infestações por Pulgas , Peste , Sifonápteros , Yersinia pestis , Humanos , Animais , Ratos , Peste/microbiologia , Madagáscar/epidemiologia , Sifonápteros/microbiologia , Infestações por Pulgas/epidemiologia , Fatores de Risco
17.
Parasite ; 31: 31, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38896103

RESUMO

Anopheles coustani has long been recognized as a secondary malaria vector in Africa. It has recently been involved in the transmission of both Plasmodium falciparum and P. vivax in Madagascar. As most secondary malaria vectors, An. coustani mainly bites outdoors, which renders the control of this mosquito species difficult using classical malaria control measures, such as the use of bed nets or indoor residual spraying of insecticides. For a better understanding of the biology and vector competence of a vector species, it is useful to rear the species in the laboratory. The absence of a colony hinders the assessment of the bionomics of a species and the development of adapted control strategies. Here, we report the first successful establishment of an An. coustani colony from mosquitoes collected in Madagascar. We used a forced copulation procedure as this mosquito species will not mate in cages. We describe our mosquito colonization procedure with detailed biological features concerning larval to adult development and survival, recorded over the first six critical generations. The procedure should be easily applicable to An. coustani from different African countries, facilitating local investigation of An. coustani vector competence and insecticide resistance using the colony as a reference.


Title: Colonisation d'Anopheles coustani, vecteur négligé du paludisme à Madagascar. Abstract: Anopheles coustani est reconnu depuis longtemps comme un vecteur secondaire du paludisme en Afrique. Il a récemment été impliqué dans la transmission de Plasmodium falciparum et de P. vivax à Madagascar. Comme la plupart des vecteurs secondaires du paludisme, An. coustani pique principalement à l'extérieur, ce qui rend difficile le contrôle de cette espèce de moustique par les mesures classiques de lutte contre le paludisme telles que l'utilisation de moustiquaires ou la pulvérisation intradomiciliaire d'insecticides à effet rémanent. Pour une meilleure compréhension de la biologie et de la compétence vectorielle d'une espèce vectrice, il est utile d'élever l'espèce en laboratoire. L'absence de colonie gêne l'évaluation de la bionomie d'une espèce et le développement de stratégies de contrôle adaptées. Nous rapportons ici le premier établissement réussi d'une colonie d' An. coustani issue de moustiques collectés à Madagascar. Nous avons utilisé une procédure de copulation forcée car cette espèce de moustique ne s'accouple pas en cage. Nous décrivons notre procédure de colonisation des moustiques avec des caractéristiques biologiques détaillées concernant le développement et la survie des stades larvaires aux adultes, enregistrées au cours des six premières générations critiques. La procédure devrait être facilement applicable aux An. coustani de différents pays africains, facilitant les enquêtes locales sur la compétence vectorielle d'An. coustani et sa résistance aux insecticides, en utilisant une colonie comme référence.


Assuntos
Anopheles , Mosquitos Vetores , Animais , Anopheles/fisiologia , Anopheles/crescimento & desenvolvimento , Anopheles/classificação , Madagáscar , Mosquitos Vetores/parasitologia , Mosquitos Vetores/fisiologia , Feminino , Masculino , Malária/transmissão , Malária/prevenção & controle , Larva
18.
J Med Entomol ; 61(3): 818-823, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38408180

RESUMO

Arboviruses can be difficult to detect in the field due to relatively low prevalence in mosquito populations. The discovery that infected mosquitoes can release viruses in both their saliva and excreta gave rise to low-cost methods for the detection of arboviruses during entomological surveillance. We implemented both saliva and excreta-based entomological surveillance during the emergence of Zika virus (ZIKV) in French Guiana in 2016 by trapping mosquitoes around households of symptomatic cases with confirmed ZIKV infection. ZIKV was detected in mosquito excreta and not in mosquito saliva in 1 trap collection out of 85 (1.2%). One female Ae. aegypti L. (Diptera: Culicidae) was found with a ZIKV systemic infection in the corresponding trap. The lag time between symptom onset in a ZIKV-infected individual living near the trap site and ZIKV detection in this mosquito was 1 wk. These results highlight the potential of detection in excreta from trapped mosquitoes as a sensitive and cost-effective method to non invasively detect arbovirus circulation.


Assuntos
Aedes , Fezes , Saliva , Zika virus , Animais , Guiana Francesa , Zika virus/isolamento & purificação , Fezes/virologia , Feminino , Aedes/virologia , Saliva/virologia , Mosquitos Vetores/virologia , Masculino , Infecção por Zika virus/transmissão
19.
Pathogens ; 13(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38535601

RESUMO

A Rift Valley fever (RVF) outbreak occurred in at least five regions of Madagascar in 2021. The aim of this study was to provide an overview of the richness, abundance, ecology, and trophic preferences of mosquitoes in the Mananjary district and to investigate the distribution of mosquitoes that were RT-PCR-positive for RVFV. Three localities were prospected from 26 April to 4 May 2021, using light traps, BG-Sentinel traps baited with an artificial human odor, Muirhead-Thomson pit traps, and indoor pyrethroid spray catches. A total of 2806 mosquitoes belonging to at least 26 species were collected. Of 512 monospecific pools of mosquitoes tested with real-time RT-PCR, RVFV was detected in 37 pools representing 10 mosquito species. The RVFV-positive species were as follows: Aedes albopictus, Ae. argenteopunctatus, Anopheles coustani, An. gambiae s.l., An. mascarensis, An. squamosus/cydippis, Culex antennatus, Cx. decens, Cx. Tritaeniorhynchus, and Uranotaenia spp. Of the 450 tested engorged females, 78.7% had taken a blood meal on humans, 92.9% on cattle, and 71.6% had taken mixed (human-cattle) blood meals. This investigation suggests the potential role of mosquitoes in RVFV transmission within this epizootic/epidemic context and that the human populations at the three study sites were highly exposed to mosquitoes. Therefore, the use of impregnated mosquito nets as an appropriate prevention method is recommended.

20.
Pathogens ; 13(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38535600

RESUMO

An epizootic of rift valley fever (RVF) was suspected on 21 February 2021 in various districts of Madagascar, with a lab confirmation on 1 April 2021. A cross-sectional survey aiming to detect cases of RVF in humans and to study the circulation of rift valley fever virus (RVFV) in animals was conducted from 22 April to 4 May 2021 in the district of Mananjary. Blood samples from cattle and humans were tested using serological and molecular techniques. In cattle, the circulation of RVFV was confirmed between 5 February and 4 May 2021. The positivity rates of anti-RVFV IgG and IgM were 60% and 40%, respectively. In humans, the circulation of RVFV was observed from 1 April to 5 May 2021. The positivity rate of RVFV was estimated to be 11.7% by combining the results of the molecular and serological approaches. Of the 103 individuals who agreed to participate in the survey, 3 were determined to be positive by RT-PCR, and 10 had anti-RVFV IgM. Among them, one was positive for both. Given that previous studies have reported the circulation of RVFV during inter-epidemic periods and the occurrence of outbreaks due to imported RVFV in Madagascar, our findings suggest the importance of strengthening RVF surveillance from a "One Health" perspective by conducting syndromic and risk-based surveillance at the national and regional levels.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa