Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gates Open Res ; 8: 27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035850

RESUMO

This article addresses the evolving challenges in evaluating insecticide-based tools for vector control. In response to the emergence of insecticide resistance in major malaria vectors, novel chemistries and products are coming to market, and there is a need to review the available testing methodologies. Commonly used methods for evaluating insecticides, such as the World Health Organization (WHO) cone bioassay, are inadequate for the diverse range of tools now available. Innovation to Impact (I2I) has studied the variability in laboratory methods, with the aim of identifying key factors that contribute to variation and providing recommendations to tighten up protocols. The I2I Methods Landscape is a living document which presents a review of existing methods for evaluating vector control tools, with the scope currently extending to insecticide-treated nets (ITNs) and indoor residual sprays (IRS). The review reveals a lack of validation for many commonly used vector control methods, highlighting the need for improved protocols to enhance reliability and robustness of the data that is generated to make decisions in product development, evaluation, and implementation. A critical aspect highlighted by this work is the need for tailored methods to measure endpoints relevant to the diverse modes of action of novel insecticides. I2I envisage that the Methods Landscape will serve as a decision-making tool for researchers and product manufacturers in selecting appropriate methods, and a means to prioritise research and development. We call for collective efforts in the pro-active development, validation, and consistent implementation of suitable methods in vector control to produce the data needed to make robust decisions.


Assuntos
Inseticidas , Malária , Controle de Mosquitos , Controle de Mosquitos/métodos , Animais , Humanos , Malária/prevenção & controle , Mosquitos Vetores/efeitos dos fármacos , Resistência a Inseticidas , Mosquiteiros Tratados com Inseticida
2.
Gates Open Res ; 8: 56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170853

RESUMO

Background: Resistance monitoring is a key element in controlling vector-borne diseases. The World Health Organization (WHO) and Centres for Disease Control and Prevention (CDC) have each developed bottle bioassay methods for determining insecticide susceptibility in mosquito vectors which are used globally. Methods: This study aimed to identify variations in bottle bioassay methodologies and assess the potential impact on the data that is generated. Our approach involved a systematic examination of existing literature and protocols from WHO and CDC, with a focus on the specifics of reported methodologies, variation between versions, and reported outcomes. Building on this, we experimentally evaluated the impact of several variables on bioassay results. Results: Our literature review exposed a significant inconsistency in the how bioassay methods are reported, hindering reliable interpretation of data and the ability to compare results between studies. The experimental research provided further insight by specifically identifying two key factors that influence the outcomes of bioassays: mosquito dry weight and relative humidity (RH). This finding not only advances our comprehension of these assays but also underscores the importance of establishing precisely defined methodologies for resistance monitoring. The study also demonstrates the importance of controlling bioassay variables, noting the significant influence of wing length, as an indicator of mosquito size, on mortality rates in standardized bioassays. Conclusions: Generating data with improved protocol consistency and precision will not only deepen our understanding of resistance patterns but also better inform vector control measures. We call for continued research and collaboration to refine and build consensus on bioassay techniques, to help bolster the global effort against vector-borne diseases like malaria.


Assuntos
Bioensaio , Centers for Disease Control and Prevention, U.S. , Mosquitos Vetores , Organização Mundial da Saúde , Bioensaio/métodos , Animais , Estados Unidos , Resistência a Inseticidas , Humanos , Inseticidas , Controle de Mosquitos/métodos , Culicidae
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa