Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217606

RESUMO

Mutations in the gene coding for leucine-rich repeat kinase 2 (LRRK2) are a leading cause of the inherited form of Parkinson's disease (PD), while LRRK2 overactivation is also associated with the more common idiopathic form of PD. LRRK2 is a large multidomain protein, including a GTPase as well as a Ser/Thr protein kinase domain. Common, disease-causing mutations increase LRRK2 kinase activity, presenting LRRK2 as an attractive target for drug discovery. Currently, drug development has mainly focused on ATP-competitive kinase inhibitors. Here, we report the identification and characterization of a variety of nanobodies that bind to different LRRK2 domains and inhibit or activate LRRK2 in cells and in in vitro. Importantly, nanobodies were identified that inhibit LRRK2 kinase activity while binding to a site that is topographically distinct from the active site and thus act through an allosteric inhibitory mechanism that does not involve binding to the ATP pocket or even to the kinase domain. Moreover, while certain nanobodies completely inhibit the LRRK2 kinase activity, we also identified nanobodies that specifically inhibit the phosphorylation of Rab protein substrates. Finally, in contrast to current type I kinase inhibitors, the studied kinase-inhibitory nanobodies did not induce LRRK2 microtubule association. These comprehensively characterized nanobodies represent versatile tools to study the LRRK2 function and mechanism and can pave the way toward novel diagnostic and therapeutic strategies for PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/metabolismo , Anticorpos de Domínio Único , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Mapeamento de Epitopos , Células HEK293 , Humanos , Camundongos , Microtúbulos/metabolismo , Fosforilação , Ligação Proteica , Células RAW 264.7 , Proteínas rab de Ligação ao GTP/metabolismo
2.
Proteomics ; 23(23-24): e2200410, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37671599

RESUMO

Trans-activation response DNA binding protein of 43 kDa (TDP-43) regulates a great variety of cellular processes in the nucleus and cytosol. In addition, a defined subset of neurodegenerative diseases is characterized by nuclear depletion of TDP-43 as well as cytosolic mislocalization and aggregation. To perform its diverse functions TDP-43 can associate with different ribonucleoprotein complexes. Combined with transcriptomics, MS interactome studies have unveiled associations between TDP-43 and the spliceosome machinery, polysomes and RNA granules. Moreover, the highly dynamic, low-valency interactions regulated by its low-complexity domain calls for innovative proximity labeling methodologies. In addition to protein partners, the analysis of post-translational modifications showed that they may play a role in the nucleocytoplasmic shuttling, RNA binding, liquid-liquid phase separation and protein aggregation of TDP-43. Here we review the various TDP-43 ribonucleoprotein complexes characterized so far, how they contribute to the diverse functions of TDP-43, and roles of post-translational modifications. Further understanding of the fluid dynamic properties of TDP-43 in ribonucleoprotein complexes, RNA granules, and self-assemblies will advance the understanding of RNA processing in cells and perhaps help to develop novel therapeutic approaches for TDPopathies.


Assuntos
Agregados Proteicos , Proteômica , Proteínas de Ligação a DNA/genética , Ribonucleoproteínas
3.
Proc Natl Acad Sci U S A ; 117(38): 23925-23931, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900929

RESUMO

Medin is the most common amyloid known in humans, as it can be found in blood vessels of the upper body in virtually everybody over 50 years of age. However, it remains unknown whether deposition of Medin plays a causal role in age-related vascular dysfunction. We now report that aggregates of Medin also develop in the aorta and brain vasculature of wild-type mice in an age-dependent manner. Strikingly, genetic deficiency of the Medin precursor protein, MFG-E8, eliminates not only vascular aggregates but also prevents age-associated decline of cerebrovascular function in mice. Given the prevalence of Medin aggregates in the general population and its role in vascular dysfunction with aging, targeting Medin may become a novel approach to sustain healthy aging.


Assuntos
Envelhecimento/metabolismo , Amiloide/metabolismo , Antígenos de Superfície/metabolismo , Proteínas do Leite/metabolismo , Doenças Vasculares/metabolismo , Idoso de 80 Anos ou mais , Amiloide/genética , Animais , Antígenos de Superfície/genética , Aorta/metabolismo , Aorta/patologia , Química Encefálica/fisiologia , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Leite/genética , Doenças Vasculares/patologia
4.
BMC Med Inform Decis Mak ; 22(1): 309, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36437469

RESUMO

BACKGROUND: Machine learning (ML) algorithms have been trained to early predict critical in-hospital events from COVID-19 using patient data at admission, but little is known on how their performance compares with each other and/or with statistical logistic regression (LR). This prospective multicentre cohort study compares the performance of a LR and five ML models on the contribution of influencing predictors and predictor-to-event relationships on prediction model´s performance. METHODS: We used 25 baseline variables of 490 COVID-19 patients admitted to 8 hospitals in Germany (March-November 2020) to develop and validate (75/25 random-split) 3 linear (L1 and L2 penalty, elastic net [EN]) and 2 non-linear (support vector machine [SVM] with radial kernel, random forest [RF]) ML approaches for predicting critical events defined by intensive care unit transfer, invasive ventilation and/or death (composite end-point: 181 patients). Models were compared for performance (area-under-the-receiver-operating characteristic-curve [AUC], Brier score) and predictor importance (performance-loss metrics, partial-dependence profiles). RESULTS: Models performed close with a small benefit for LR (utilizing restricted cubic splines for non-linearity) and RF (AUC means: 0.763-0.731 [RF-L1]); Brier scores: 0.184-0.197 [LR-L1]). Top ranked predictor variables (consistently highest importance: C-reactive protein) were largely identical across models, except creatinine, which exhibited marginal (L1, L2, EN, SVM) or high/non-linear effects (LR, RF) on events. CONCLUSIONS: Although the LR and ML models analysed showed no strong differences in performance and the most influencing predictors for COVID-19-related event prediction, our results indicate a predictive benefit from taking account for non-linear predictor-to-event relationships and effects. Future efforts should focus on leveraging data-driven ML technologies from static towards dynamic modelling solutions that continuously learn and adapt to changes in data environments during the evolving pandemic. TRIAL REGISTRATION NUMBER: NCT04659187.


Assuntos
COVID-19 , Humanos , Modelos Logísticos , Estudos de Coortes , Estudos Prospectivos , Aprendizado de Máquina , Hospitais
5.
Blood ; 134(14): 1159-1175, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31366618

RESUMO

Hematopoietic transcription factor LIM domain only 2 (LMO2), a member of the TAL1 transcriptional complex, plays an essential role during early hematopoiesis and is frequently activated in T-cell acute lymphoblastic leukemia (T-ALL) patients. Here, we demonstrate that LMO2 is activated by deacetylation on lysine 74 and 78 via the nicotinamide phosphoribosyltransferase (NAMPT)/sirtuin 2 (SIRT2) pathway. LMO2 deacetylation enables LMO2 to interact with LIM domain binding 1 and activate the TAL1 complex. NAMPT/SIRT2-mediated activation of LMO2 by deacetylation appears to be important for hematopoietic differentiation of induced pluripotent stem cells and blood formation in zebrafish embryos. In T-ALL, deacetylated LMO2 induces expression of TAL1 complex target genes HHEX and NKX3.1 as well as LMO2 autoregulation. Consistent with this, inhibition of NAMPT or SIRT2 suppressed the in vitro growth and in vivo engraftment of T-ALL cells via diminished LMO2 deacetylation. This new molecular mechanism may provide new therapeutic possibilities in T-ALL and may contribute to the development of new methods for in vitro generation of blood cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hematopoese , Proteínas com Domínio LIM/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Acetilação , Animais , Células Cultivadas , Células HEK293 , Humanos , Leucopoese , Camundongos , Modelos Moleculares , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Peixe-Zebra
6.
Nature ; 526(7575): 700-4, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26466568

RESUMO

Neuroblastoma is a malignant paediatric tumour of the sympathetic nervous system. Roughly half of these tumours regress spontaneously or are cured by limited therapy. By contrast, high-risk neuroblastomas have an unfavourable clinical course despite intensive multimodal treatment, and their molecular basis has remained largely elusive. Here we have performed whole-genome sequencing of 56 neuroblastomas (high-risk, n = 39; low-risk, n = 17) and discovered recurrent genomic rearrangements affecting a chromosomal region at 5p15.33 proximal of the telomerase reverse transcriptase gene (TERT). These rearrangements occurred only in high-risk neuroblastomas (12/39, 31%) in a mutually exclusive fashion with MYCN amplifications and ATRX mutations, which are known genetic events in this tumour type. In an extended case series (n = 217), TERT rearrangements defined a subgroup of high-risk tumours with particularly poor outcome. Despite a large structural diversity of these rearrangements, they all induced massive transcriptional upregulation of TERT. In the remaining high-risk tumours, TERT expression was also elevated in MYCN-amplified tumours, whereas alternative lengthening of telomeres was present in neuroblastomas without TERT or MYCN alterations, suggesting that telomere lengthening represents a central mechanism defining this subtype. The 5p15.33 rearrangements juxtapose the TERT coding sequence to strong enhancer elements, resulting in massive chromatin remodelling and DNA methylation of the affected region. Supporting a functional role of TERT, neuroblastoma cell lines bearing rearrangements or amplified MYCN exhibited both upregulated TERT expression and enzymatic telomerase activity. In summary, our findings show that remodelling of the genomic context abrogates transcriptional silencing of TERT in high-risk neuroblastoma and places telomerase activation in the centre of transformation in a large fraction of these tumours.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Recombinação Genética/genética , Telomerase/genética , Telomerase/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Cromatina/genética , Cromatina/metabolismo , Cromossomos Humanos Par 5/genética , DNA Helicases/genética , Metilação de DNA , Elementos Facilitadores Genéticos/genética , Ativação Enzimática/genética , Amplificação de Genes/genética , Inativação Gênica , Humanos , Lactente , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/classificação , Neuroblastoma/enzimologia , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Prognóstico , RNA Mensageiro/análise , RNA Mensageiro/genética , Risco , Translocação Genética/genética , Regulação para Cima/genética , Proteína Nuclear Ligada ao X
7.
J Biol Chem ; 294(2): 644-661, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30455355

RESUMO

Ataxin-3 is a deubiquitinating enzyme and the affected protein in the neurodegenerative disorder Machado-Joseph disease (MJD). The ATXN3 gene is alternatively spliced, resulting in protein isoforms that differ in the number of ubiquitin-interacting motifs. Additionally, nonsynonymous SNPs in ATXN3 cause amino acid changes in ataxin-3, and one of these polymorphisms introduces a premature stop codon in one isoform. Here, we examined the effects of different ataxin-3 isoforms and of the premature stop codon on ataxin-3's physiological function and on main disease mechanisms. At the physiological level, we show that alternative splicing and the premature stop codon alter ataxin-3 stability and that ataxin-3 isoforms differ in their enzymatic deubiquitination activity, subcellular distribution, and interaction with other proteins. At the pathological level, we found that the expansion of the polyglutamine repeat leads to a stabilization of ataxin-3 and that ataxin-3 isoforms differ in their aggregation properties. Interestingly, we observed a functional interaction between normal and polyglutamine-expanded ATXN3 allelic variants. We found that interactions between different ATXN3 allelic variants modify the physiological and pathophysiological properties of ataxin-3. Our findings indicate that alternative splicing and interactions between different ataxin-3 isoforms affect not only major aspects of ataxin-3 function but also MJD pathogenesis. Our results stress the importance of considering isoforms of disease-causing proteins and their interplay with the normal allelic variant as disease modifiers in MJD and autosomal-dominantly inherited diseases in general.


Assuntos
Processamento Alternativo , Ataxina-3/genética , Ataxina-3/metabolismo , Doença de Machado-Joseph/genética , Agregação Patológica de Proteínas/genética , Ataxina-3/análise , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Polimorfismo de Nucleotídeo Único , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Mapas de Interação de Proteínas , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Ubiquitina/metabolismo
8.
J Biol Chem ; 293(41): 16083-16099, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30120199

RESUMO

TAR DNA-binding protein of 43 kDa (TDP-43) forms pathological aggregates in neurodegenerative diseases, particularly in certain forms of frontotemporal dementia and amyotrophic lateral sclerosis. Pathological modifications of TDP-43 include proteolytic fragmentation, phosphorylation, and ubiquitinylation. A pathognomonic TDP-43 C-terminal fragment (CTF) spanning amino acids 193-414 contains only four lysine residues that could be potentially ubiquitinylated. Here, serial mutagenesis of these four lysines to arginine revealed that not a single residue is responsible for the ubiquitinylation of mCherry-tagged CTF. Removal of all four lysines was necessary to suppress ubiquitinylation. Interestingly, Lys-408 substitution enhanced the pathological phosphorylation of the immediately adjacent serine residues 409/410 in the context of mCherry-CTF. Thus, Lys-408 ubiquitinylation appears to hinder Ser-409/410 phosphorylation in TDP-43 CTF. However, we did not observe the same effect for full-length TDP-43. We extended the mutagenesis study to full-length TDP-43 and performed MS. Ubiquitinylated lysine residues were identified in the nuclear localization sequence (NLS; Lys-84 and Lys-95) and RNA-binding region (mostly Lys-160, Lys-181, and Lys-263). Mutagenesis of Lys-84 confirmed its importance as the major determinant for nuclear import, whereas Lys-95 mutagenesis did not significantly affect TDP-43's nucleo-cytoplasmic distribution, solubility, aggregation, and RNA-processing activities. Nevertheless, the K95A mutant had significantly reduced Ser-409/410 phosphorylation, emphasizing the suspected interplay between TDP-43 ubiquitinylation and phosphorylation. Collectively, our analysis of TDP-43 ubiquitinylation sites indicates that the NLS residues Lys-84 and Lys-95 have more prominent roles in TDP-43 function than the more C-terminal lysines and suggests a link between specific ubiquitinylation events and pathological TDP-43 phosphorylation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Ubiquitina/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Lisina/química , Mutagênese Sítio-Dirigida , Mutação , Fosforilação , Processamento de Proteína Pós-Traducional , Solubilidade
9.
Mov Disord ; 34(4): 496-505, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30485545

RESUMO

BACKGROUND: Genetic variability in LRRK2 has been unequivocally established as a major risk factor for familial and sporadic forms of PD in ethnically diverse populations. OBJECTIVES: To resolve the role of LRRK2 in the Indian population. METHODS: We performed targeted resequencing of the LRRK2 locus in 288 cases and 298 controls and resolved the haplotypic structure of LRRK2 in a combined cohort of 800 cases and 402 controls in the Indian population. We assessed the frequency of novel missense variants in the white and East Asian population by leveraging exome sequencing and densely genotype data, respectively. We did computational modeling and biochemical approach to infer the potential role of novel variants impacting the LRRK2 protein function. Finally, we assessed the phosphorylation activity of identified novel coding variants in the LRRK2 gene. RESULTS: We identified four novel missense variants with frequency ranging from 0.0008% to 0.002% specific for the Indian population, encompassing armadillo and kinase domains of the LRRK2 protein. A common genetic variability within LRRK2 may contribute to increased risk, but it was nonsignificant after correcting for multiple testing, because of small cohort size. The computational modeling showed destabilizing effect on the LRRK2 function. In comparison to the wild-type, the kinase domain variant showed 4-fold increase in the kinase activity. CONCLUSIONS: Our study, for the first time, identified novel missense variants for LRRK2, specific for the Indian population, and showed that a novel missense variant in the kinase domain modifies kinase activity in vitro. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Predisposição Genética para Doença , Variação Genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Feminino , Frequência do Gene , Genótipo , Haplótipos , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Adulto Jovem
10.
Proc Natl Acad Sci U S A ; 113(30): E4357-66, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27357661

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a large, multidomain protein containing two catalytic domains: a Ras of complex proteins (Roc) G-domain and a kinase domain. Mutations associated with familial and sporadic Parkinson's disease (PD) have been identified in both catalytic domains, as well as in several of its multiple putative regulatory domains. Several of these mutations have been linked to increased kinase activity. Despite the role of LRRK2 in the pathogenesis of PD, little is known about its overall architecture and how PD-linked mutations alter its function and enzymatic activities. Here, we have modeled the 3D structure of dimeric, full-length LRRK2 by combining domain-based homology models with multiple experimental constraints provided by chemical cross-linking combined with mass spectrometry, negative-stain EM, and small-angle X-ray scattering. Our model reveals dimeric LRRK2 has a compact overall architecture with a tight, multidomain organization. Close contacts between the N-terminal ankyrin and C-terminal WD40 domains, and their proximity-together with the LRR domain-to the kinase domain suggest an intramolecular mechanism for LRRK2 kinase activity regulation. Overall, our studies provide, to our knowledge, the first structural framework for understanding the role of the different domains of full-length LRRK2 in the pathogenesis of PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Homologia de Sequência de Aminoácidos
11.
Biol Chem ; 399(7): 637-642, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29894291

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a multi-domain protein and its mutations can lead to Parkinson's disease. Recent studies on LRRK2 and homologue proteins have advanced our mechanistic understanding of LRRK2 regulation. Here, we summarize the available data on the biochemistry and structure of LRRK2 and postulate three possible layers of regulation, translocation, monomer-dimer equilibrium and intramolecular activation of domains.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/metabolismo
12.
Biol Chem ; 399(12): 1447-1456, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30067506

RESUMO

Roco proteins have come into focus after mutations in the gene coding for the human Roco protein Leucine-rich repeat kinase 2 (LRRK2) were discovered to be one of the most common genetic causes of late onset Parkinson's disease. Roco proteins are characterized by a Roc domain responsible for GTP binding and hydrolysis, followed by a COR dimerization device. The regulation and function of this RocCOR domain tandem is still not completely understood. To fully biochemically characterize Roco proteins, we performed a systematic survey of the kinetic properties of several Roco protein family members, including LRRK2. Together, our results show that Roco proteins have a unique G-protein cycle. Our results confirm that Roco proteins have a low nucleotide affinity in the micromolar range and thus do not strictly depend on G-nucleotide exchange factors. Measurement of multiple and single turnover reactions shows that neither Pi nor GDP release are rate-limiting, while this is the case for the GAP-mediated GTPase reaction of some small G-proteins like Ras and for most other high affinity Ras-like proteins, respectively. The KM values of the reactions are in the range of the physiological GTP concentration, suggesting that LRRK2 functioning might be regulated by the cellular GTP level.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Cinética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação
13.
Brain ; 140(5): 1280-1299, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334907

RESUMO

Ataxin-3, the disease protein in Machado-Joseph disease, is known to be proteolytically modified by various enzymes including two major families of proteases, caspases and calpains. This processing results in the generation of toxic fragments of the polyglutamine-expanded protein. Although various approaches were undertaken to identify cleavage sites within ataxin-3 and to evaluate the impact of fragments on the molecular pathogenesis of Machado-Joseph disease, calpain-mediated cleavage of the disease protein and the localization of cleavage sites remained unclear. Here, we report on the first precise localization of calpain cleavage sites in ataxin-3 and on the characterization of the resulting breakdown products. After confirming the occurrence of calpain-derived fragmentation of ataxin-3 in patient-derived cell lines and post-mortem brain tissue, we combined in silico prediction tools, western blot analysis, mass spectrometry, and peptide overlay assays to identify calpain cleavage sites. We found that ataxin-3 is primarily cleaved at two sites, namely at amino acid positions D208 and S256 and mutating amino acids at both cleavage sites to tryptophan nearly abolished ataxin-3 fragmentation. Furthermore, analysis of calpain cleavage-derived fragments showed distinct aggregation propensities and toxicities of C-terminal polyglutamine-containing breakdown products. Our data elucidate the important role of ataxin-3 proteolysis in the pathogenesis of Machado-Joseph disease and further emphasize the relevance of targeting this disease pathway as a treatment strategy in neurodegenerative disorders.


Assuntos
Ataxina-3/metabolismo , Calpaína/metabolismo , Doença de Machado-Joseph/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Técnicas de Química Combinatória , Simulação por Computador , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeo Hidrolases/metabolismo , Agregação Patológica de Proteínas/metabolismo , Transfecção
14.
BMC Biotechnol ; 17(1): 6, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28095828

RESUMO

BACKGROUND: Next-generation sequencing (NGS) has transformed genomic research by reducing turnaround time and cost. However, no major breakthrough has been made in the upstream library preparation methods until the transposase-based Nextera method was invented. Nextera combines DNA fragmentation and barcoding in a single tube reaction and therefore enables a very fast workflow to sequencing-ready DNA libraries within a couple of hours. When compared to the traditional ligation-based methods, transposed-based Nextera has a slight insertion bias. RESULTS: Here we present the discovery of a mutant transposase (Tn5-059) with a lowered GC insertion bias through protein engineering. We demonstrate Tn5-059 reduces AT dropout and increases uniformity of genome coverage in both bacterial genomes and human genome. We also observe higher library diversity generated by Tn5-059 when compared to Nextera v2 for human exomes, which leads to less sequencing and lower cost per genome. In addition, when used for human exomes, Tn5-059 delivers consistent library insert size over a range of input DNA, allowing up to a tenfold variance from the 50 ng input recommendation. CONCLUSIONS: Enhanced DNA input tolerance of Tn5-059 can translate to flexibility and robustness of workflow. DNA input tolerance together with superior uniformity of coverage and lower AT dropouts extend the applications of transposase based library preps. We discuss possible mechanisms of improvements in Tn5-059, and potential advantages of using the new mutant in varieties of applications including microbiome sequencing and chromatin profiling.


Assuntos
Mapeamento Cromossômico/métodos , DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Engenharia de Proteínas , Análise de Sequência de DNA/métodos , Transposases/genética , Sequência Rica em At/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Proc Natl Acad Sci U S A ; 111(1): E34-43, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24351927

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a multidomain protein implicated in Parkinson disease (PD); however, the molecular mechanism and mode of action of this protein remain elusive. cAMP-dependent protein kinase (PKA), along with other kinases, has been suggested to be an upstream kinase regulating LRRK2 function. Using MS, we detected several sites phosphorylated by PKA, including phosphorylation sites within the Ras of complex proteins (ROC) GTPase domain as well as some previously described sites (S910 and S935). We systematically mapped those sites within LRRK2 and investigated their functional consequences. S1444 in the ROC domain was confirmed as a target for PKA phosphorylation using ROC single-domain constructs and through site-directed mutagenesis. Phosphorylation at S1444 is strikingly reduced in the major PD-related LRRK2 mutations R1441C/G/H, which are part of a consensus PKA recognition site ((1441)RASpS(1444)). Furthermore, our work establishes S1444 as a PKA-regulated 14-3-3 docking site. Experiments of direct binding to the three 14-3-3 isotypes gamma, theta, and zeta with phosphopeptides encompassing pS910, pS935, or pS1444 demonstrated the highest affinities to phospho-S1444. Strikingly, 14-3-3 binding to phospho-S1444 decreased LRRK2 kinase activity in vitro. Moreover, substitution of S1444 by alanine or by introducing the mutations R1441C/G/H, abrogating PKA phosphorylation and 14-3-3 binding, resulted in increased LRRK2 kinase activity. In conclusion, these data clearly demonstrate that LRRK2 kinase activity is modulated by PKA-mediated binding of 14-3-3 to S1444 and suggest that 14-3-3 interaction with LRRK2 is hampered in R1441C/G/H-mediated PD pathogenesis.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Mutação , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/genética , Alanina/química , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Espectrometria de Massas , Mutagênese Sítio-Dirigida , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Ressonância de Plasmônio de Superfície
16.
J Cell Sci ; 127(Pt 24): 5240-52, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25335892

RESUMO

Class 3 semaphorins are anti-angiogenic and anti-tumorigenic guidance factors that bind to neuropilins, which, in turn, associate with class A plexins to transduce semaphorin signals. To study the role of the plexin-A2 receptor in semaphorin signaling, we silenced its expression in endothelial cells and in glioblastoma cells. The silencing did not affect Sema3A signaling, which depended on neuropilin-1, plexin-A1 and plexin-A4, but completely abolished Sema3B signaling, which also required plexin-A4 and one of the two neuropilins. Interestingly, overexpression of plexin-A2 in plexin-A1- or plexin-A4-silenced cells restored responses to both semaphorins, although it nullified their ability to differentiate between them, suggesting that, when overexpressed, plexin-A2 can functionally replace other class A plexins. By contrast, although plexin-A4 overexpression restored Sema3A signaling in plexin-A1-silenced cells, it failed to restore Sema3B signaling in plexin-A2-silenced cells. It follows that the identity of plexins in functional semaphorin receptors can be flexible depending on their expression level. Our results suggest that changes in the expression of plexins induced by microenvironmental cues can trigger differential responses of different populations of migrating cells to encountered gradients of semaphorins.


Assuntos
Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforina-3A/metabolismo , Semaforinas/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Inativação Gênica , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Modelos Biológicos , Neuropilina-1/metabolismo
17.
Biochem Soc Trans ; 44(6): 1635-1641, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27913672

RESUMO

Mutations within the leucine-rich repeat kinase 2 (LRRK2) gene represent the most common cause of Mendelian forms of Parkinson's disease, among autosomal dominant cases. Its gene product, LRRK2, is a large multidomain protein that belongs to the Roco protein family exhibiting GTPase and kinase activity, with the latter activity increased by pathogenic mutations. To allow rational drug design against LRRK2 and to understand the cross-regulation of the G- and the kinase domain at a molecular level, it is key to solve the three-dimensional structure of the protein. We review here our recent successful approach to build the first structural model of dimeric LRRK2 by an integrative modeling approach.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Doença de Parkinson/enzimologia , Multimerização Proteica , Estrutura Terciária de Proteína , Sítios de Ligação/genética , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Modelos Moleculares , Mutação , Doença de Parkinson/genética , Fosforilação
18.
Proteomics ; 15(8): 1390-404, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25648416

RESUMO

Molecular interaction databases are essential resources that enable access to a wealth of information on associations between proteins and other biomolecules. Network graphs generated from these data provide an understanding of the relationships between different proteins in the cell, and network analysis has become a widespread tool supporting -omics analysis. Meaningfully representing this information remains far from trivial and different databases strive to provide users with detailed records capturing the experimental details behind each piece of interaction evidence. A targeted curation approach is necessary to transfer published data generated by primarily low-throughput techniques into interaction databases. In this review we present an example highlighting the value of both targeted curation and the subsequent effective visualization of detailed features of manually curated interaction information. We have curated interactions involving LRRK2, a protein of largely unknown function linked to familial forms of Parkinson's disease, and hosted the data in the IntAct database. This LRRK2-specific dataset was then used to produce different visualization examples highlighting different aspects of the data: the level of confidence in the interaction based on orthogonal evidence, those interactions found under close-to-native conditions, and the enzyme-substrate relationships in different in vitro enzymatic assays. Finally, pathway annotation taken from the Reactome database was overlaid on top of interaction networks to bring biological functional context to interaction maps.


Assuntos
Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Gráficos por Computador , Bases de Dados de Proteínas , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Anotação de Sequência Molecular , Doença de Parkinson/metabolismo , Proteômica/métodos , Software
19.
Elife ; 132024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666771

RESUMO

Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson's disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.


Assuntos
Microscopia Crioeletrônica , Guanosina Trifosfato , Anticorpos de Domínio Único , Anticorpos de Domínio Único/metabolismo , Anticorpos de Domínio Único/química , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Conformação Proteica , Regulação Alostérica , Modelos Moleculares , Multimerização Proteica , Humanos
20.
J Biol Chem ; 287(2): 1279-89, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22110140

RESUMO

Huntington disease (HD), a fatal neurodegenerative disorder, is caused by a lengthening of the polyglutamine tract in the huntingtin (Htt) protein. Despite considerable effort, thus far there is no cure or treatment available for the disorder. Using the approach of tandem affinity purification we recently discovered that prothymosin-α (ProTα), a small highly acidic protein, interacts with mutant Htt (mHtt). This was confirmed by co-immunoprecipitation and a glutathione S-transferase (GST) pull-down assay. Overexpression of ProTα remarkably reduced mHtt-induced cytotoxicity in both non-neuronal and neuronal cell models expressing N-terminal mHtt fragments, whereas knockdown of ProTα expression in the cells enhanced mHtt-caused cell death. Deletion of the central acidic domain of ProTα abolished not only its interaction with mHtt but also its protective effect on mHtt-caused cytotoxicity. Additionally, overexpression of ProTα inhibited caspase-3 activation but enhanced aggregation of mHtt. Furthermore, when added to cultured cells expressing mHtt, the purified recombinant ProTα protein not only entered the cells but it also significantly suppressed the mHtt-caused cytotoxicity. Taken together, these data suggest that ProTα might be a novel therapeutic target for treating HD and other polyglutamine expansion disorders.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Precursores de Proteínas/metabolismo , Timosina/análogos & derivados , Sequência de Aminoácidos , Caspase 3/genética , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Proteína Huntingtina , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Ligação Proteica , Precursores de Proteínas/genética , Precursores de Proteínas/farmacologia , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Deleção de Sequência , Timosina/genética , Timosina/metabolismo , Timosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa