Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Exp Bot ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470077

RESUMO

For crop production, the water supply limitations will likely become a bigger restriction underlining a need for crops that use less water per mass of production. Therefore, water use efficiency becomes a constraint in obtaining resilient and productive crops. We hypothesized that under drought conditions via modulation of chloroplast signal for stomatal opening by upregulation of non-photochemical quenching (NPQ) it is possible to improve water use efficiency. Nicotiana tabacum plants with strong overexpression of photosystem II subunit S (PsbS), a key protein to NPQ, were grown under varied levels of drought. The PsbS-overexpressing lines lost 11% less water per CO2 fixed under drought which did not have a significant effect on plant size. Depending on growth conditions PsbS-overexpressing lines on the whole plant level consumed from 4% to 30% less water than the corresponding wildtype. The leaf water and chlorophyll contents showed a positive relation with the level of NPQ. Our study provides proof of concept and as such is an important step towards engineering crops with improved water use efficiency.

2.
New Phytol ; 239(3): 1068-1082, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37212042

RESUMO

Photoprotection against excess light via nonphotochemical quenching (NPQ) is indispensable for plant survival. However, slow NPQ relaxation under low light conditions can decrease yield of field-grown crops up to 40%. Using semi-high-throughput assay, we quantified the kinetics of NPQ and photosystem II operating efficiency (ΦPSII) in a replicated field trial of more than 700 maize (Zea mays) genotypes across 2 yr. Parametrized kinetics data were used to conduct genome-wide association studies. For six candidate genes involved in NPQ and ΦPSII kinetics in maize the loss of function alleles of orthologous genes in Arabidopsis (Arabidopsis thaliana) were characterized: two thioredoxin genes, and genes encoding a transporter in the chloroplast envelope, an initiator of chloroplast movement, a putative regulator of cell elongation and stomatal patterning, and a protein involved in plant energy homeostasis. Since maize and Arabidopsis are distantly related, we propose that genes involved in photoprotection and PSII function are conserved across vascular plants. The genes and naturally occurring functional alleles identified here considerably expand the toolbox to achieving a sustainable increase in crop productivity.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Luz , Estudo de Associação Genômica Ampla , Cloroplastos/metabolismo , Fotossíntese , Clorofila/metabolismo
3.
New Phytol ; 239(6): 2197-2211, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37357337

RESUMO

Improving photosynthetic efficiency has recently emerged as a promising way to increase crop production in a sustainable manner. While chloroplast size may affect photosynthetic efficiency in several ways, we aimed to explore whether chloroplast size manipulation can be a viable approach to improving photosynthetic performance. Several tobacco (Nicotiana tabacum) lines with contrasting chloroplast sizes were generated via manipulation of chloroplast division genes to assess photosynthetic performance under steady-state and fluctuating light. A selection of lines was included in a field trial to explore productivity. Lines with enlarged chloroplasts underperformed in most of the measured traits. Lines with smaller and more numerous chloroplasts showed a similar efficiency compared with wild-type (WT) tobacco. Chloroplast size only weakly affected light absorptance and light profiles within the leaf. Increasing chloroplast size decreased mesophyll conductance (gm ) but decreased chloroplast size did not increase gm . Increasing chloroplast size reduced chloroplast movements and enhanced non-photochemical quenching. The chloroplast smaller than WT appeared to be no better than WT for photosynthetic efficiency and productivity under field conditions. The results indicate that chloroplast size manipulations are therefore unlikely to lead to higher photosynthetic efficiency or growth.


Assuntos
Cloroplastos , Fotossíntese , Cloroplastos/metabolismo , Folhas de Planta , Nicotiana/genética
4.
J Plant Res ; 136(6): 931-945, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37676608

RESUMO

In the presented study, the effects of cadmium (Cd) stress and silicon (Si) supplementation on the pea plant (Pisum sativum L.) were investigated. The tendency to accumulate cadmium in the relevant morphological parts of the plant (roots and shoots respectively)-bioaccumulation, the transfer of this element in the plant (translocation) and the physiological parameters of the plant through indicators of oxidative stress were determined. Model studies were carried out at pH values 6.0 and 5.0 plant growth conditions in the hydroponic cultivation. It was shown that Cd accumulates mostly in plant roots at both pH levels. However, the Cd content is higher in the plants grown at lower pH. The Cd translocation factor was below 1.0, which indicates that the pea is an excluder plant. The contamination of the plant growth environment with Cd causes the increased antioxidant stress by the growing parameters of the total phenolic content (TPC), polyphenol oxidase activity (PPO), the malondialdehyde (MDA) and lipid peroxidation (LP). The results obtained showed that the supplementation with Si reduces these parameters, thus lowering the oxidative stress of the plant. Moreover, supplementation with Si leads to a lower content of Cd in the roots and reduces bioaccumulation of Cd in shoots and roots of pea plants.


Assuntos
Cádmio , Poluentes do Solo , Pisum sativum , Antioxidantes/metabolismo , Estresse Oxidativo , Silício , Nutrientes , Raízes de Plantas/metabolismo
5.
Molecules ; 28(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298792

RESUMO

This review describes the role of silicon (Si) in plants. Methods of silicon determination and speciation are also reported. The mechanisms of Si uptake by plants, silicon fractions in the soil, and the participation of flora and fauna in the Si cycle in terrestrial ecosystems have been overviewed. Plants of Fabaceae (especially Pisum sativum L. and Medicago sativa L.) and Poaceae (particularly Triticum aestivum L.) families with different Si accumulation capabilities were taken into consideration to describe the role of Si in the alleviation of the negative effects of biotic and abiotic stresses. The article focuses on sample preparation, which includes extraction methods and analytical techniques. The methods of isolation and the characterization of the Si-based biologically active compounds from plants have been overviewed. The antimicrobial properties and cytotoxic effects of known bioactive compounds obtained from pea, alfalfa, and wheat were also described.


Assuntos
Compostos de Silício , Silício , Humanos , Silício/farmacologia , Triticum , Medicago sativa , Pisum sativum , Ecossistema
6.
J Exp Bot ; 73(16): 5745-5757, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35595294

RESUMO

Water deficit currently acts as one of the largest limiting factors for agricultural productivity worldwide. Additionally, limitation by water scarcity is projected to continue in the future with the further onset of effects of global climate change. As a result, it is critical to develop or breed for crops that have increased water use efficiency and that are more capable of coping with water scarce conditions. However, increased intrinsic water use efficiency (iWUE) typically brings a trade-off with CO2 assimilation as all gas exchange is mediated by stomata, through which CO2 enters the leaf while water vapor exits. Previously, promising results were shown using guard-cell-targeted overexpression of hexokinase to increase iWUE without incurring a penalty in photosynthetic rates or biomass production. Here, two homozygous transgenic tobacco (Nicotiana tabacum) lines expressing Arabidopsis Hexokinase 1 (AtHXK1) constitutively (35SHXK2 and 35SHXK5) and a line that had guard-cell-targeted overexpression of AtHXK1 (GCHXK2) were evaluated relative to wild type for traits related to photosynthesis and yield. In this study, iWUE was significantly higher in GCHXK2 compared with wild type without negatively impacting CO2 assimilation, although results were dependent upon leaf age and proximity of precipitation event to gas exchange measurement.


Assuntos
Arabidopsis , Nicotiana , Arabidopsis/genética , Dióxido de Carbono , Hexoquinase/genética , Fotossíntese , Melhoramento Vegetal , Folhas de Planta , Nicotiana/genética
7.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362042

RESUMO

The phytotoxicity of silver nanoparticles (Ag NPs) to plant seeds germination and seedlings development depends on nanoparticles properties and concentration, as well as plant species and stress tolerance degrees. In the present study, the effect of citrate-stabilized spherical Ag NPs (20 mg/L) in sizes of 10, 20, 40, 60, and 100 nm, on wheat grain germination, early seedlings development, and polar metabolite profile in 3-day-old seedlings were analyzed. Ag NPs, regardless of their sizes, did not affect the germination of wheat grains. However, the smaller nanoparticles (10 and 20 nm in size) decreased the growth of seedling roots. Although the concentrations of total polar metabolites in roots, coleoptile, and endosperm of seedlings were not affected by Ag NPs, significant re-arrangements of carbohydrates profiles in seedlings were noted. In roots and coleoptile of 3-day-old seedlings, the concentration of sucrose increased, which was accompanied by a decrease in glucose and fructose. The concentrations of most other polar metabolites (amino acids, organic acids, and phosphate) were not affected by Ag NPs. Thus, an unknown signal is released by small-sized Ag NPs that triggers affection of sugars metabolism and/or distribution.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Germinação , Triticum , Plântula , Prata/farmacologia , Raízes de Plantas , Nanopartículas/química
8.
Molecules ; 27(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35408702

RESUMO

Changes in the metabolome of germinating seeds and seedlings caused by metal nanoparticles are poorly understood. In the present study, the effects of bio-synthesized silver nanoparticles ((Bio)Ag NPs) on grains germination, early seedlings development, and metabolic profiles of roots, coleoptile, and endosperm of wheat were analyzed. Grains germinated well in (Bio)Ag NPs suspensions at the concentration in the range 10-40 mg/L. However, the growth of coleoptile was inhibited by 25%, regardless of (Bio)Ag NPs concentration tested, whereas the growth of roots gradually slowed down along with the increasing concentration of (Bio)Ag NPs. The deleterious effect of Ag NPs on roots was manifested by their shortening, thickening, browning of roots tips, epidermal cell death, progression from apical meristem up to root hairs zone, and the inhibition of root hair development. (Bio)Ag NPs stimulated ROS production in roots and affected the metabolic profiles of all tissues. Roots accumulated sucrose, maltose, 1-kestose, phosphoric acid, and some amino acids (i.e., proline, aspartate/asparagine, hydroxyproline, and branched-chain amino acids). In coleoptile and endosperm, contrary to roots, the concentration of most metabolites decreased. Moreover, coleoptile accumulated galactose. Changes in the concentration of polar metabolites in seedlings revealed the affection of primary metabolism, disturbances in the mobilization of storage materials, and a translocation of sugars and amino acids from the endosperm to growing seedlings.


Assuntos
Germinação , Nanopartículas Metálicas , Aminoácidos/metabolismo , Metaboloma , Raízes de Plantas/metabolismo , Plântula , Prata/metabolismo , Prata/farmacologia , Triticum/metabolismo
9.
Molecules ; 26(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34833856

RESUMO

In this study, the ability of Lemna minor L. to recover to normal growth, after being degraded in a tetracycline-containing medium, was extensively investigated. The plants were exposed to tetracycline (TC) at concentrations of 1, 2.5, and 10 mM. Subsequently, their physiological status was analysed against the following criteria: rate of plant growth; free radical accumulation; antioxidant enzyme activity; chlorophyll content; HSP70 protein content; cell membrane permeability, and mitochondrial activity. The study showed that duckweed can considerably recover from the damage caused by antibiotics, within a week of cessation of stress. Of the plant properties analysed, mitochondrial activity was the most sensitive to antibiotic-induced disturbances. After transferring the plants to a tetracycline-free medium, all plant parameters improved significantly, except for the mitochondrial activity in the plants grown on the medium containing the highest dose of tetracycline. In the plants treated with this antibiotic at the concentration of 10 mM, the proportion of dead mitochondria increased and was as high as 93% after one week from the beginning of the recovery phase, even after the transfer to the tetracycline-free medium.


Assuntos
Antioxidantes/metabolismo , Araceae/metabolismo , Clorofila/metabolismo , Tetraciclina/farmacologia , Poluentes Químicos da Água/farmacologia
10.
J Exp Bot ; 71(1): 318-329, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31731291

RESUMO

Improving photosynthetic efficiency is widely regarded as a major route to achieving much-needed yield gains in crop plants. In plants with C3 photosynthesis, increasing the diffusion conductance for CO2 transfer from substomatal cavity to chloroplast stroma (gm) could help to improve the efficiencies of CO2 assimilation and photosynthetic water use in parallel. The diffusion pathway from substomatal cavity to chloroplast traverses cell wall, plasma membrane, cytosol, chloroplast envelope membranes, and chloroplast stroma. Specific membrane intrinsic proteins of the aquaporin family can facilitate CO2 diffusion across membranes. Some of these aquaporins, such as PIP1;2 in Arabidopsis thaliana, have been suggested to exert control over gm and the magnitude of the CO2 assimilation flux, but the evidence for a direct physiological role of aquaporins in determining gm is limited. Here, we estimated gm with four different methods under a range of light intensities and CO2 concentrations in two previously characterized pip1;2 knock-out lines as well as pip1;3 and pip2;6 knock-out lines, which have not been previously evaluated for a role in gm. This study presents the most in-depth analysis of gm in Arabidopsis aquaporin knock-out mutants to date. Surprisingly, all methods failed to show any significant differences between the pip1;2, pip1;3, or pip2;6 mutants and the Col-0 control.


Assuntos
Aquaporinas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Células do Mesofilo/metabolismo , Fotossíntese/genética , Aquaporinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo
11.
Photosynth Res ; 141(1): 83-97, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30891661

RESUMO

Prediction of stomatal conductance is a key element to relate and scale up leaf-level gas exchange processes to canopy, ecosystem and land surface models. The empirical models that are typically employed for this purpose are simple and elegant formulations which relate stomatal conductance on a leaf area basis to the net rate of CO2 assimilation, humidity and CO2 concentration. Although light intensity is not directly modelled as a stomatal opening cue, it is well-known that stomata respond strongly to light. One response mode depends specifically on the blue-light part of the light spectrum, whereas the quantitative or 'red' light response is less spectrally defined and relies more on the quantity of incident light. Here, we present a modification of an empirical stomatal conductance model which explicitly accounts for the stomatal red-light response, based on a mesophyll-derived signal putatively initiated by the chloroplastic plastoquinone redox state. The modified model showed similar prediction accuracy compared to models using a relationship between stomatal conductance and net assimilation rate. However, fitted parameter values with the modified model varied much less across different measurement conditions, lessening the need for frequent re-parameterization to different conditions required of the current model. We also present a simple and easy to parameterize extension to the widely used Farquhar-Von Caemmerer-Berry photosynthesis model to facilitate coupling with the modified stomatal conductance model, which should enable use of the new stomatal conductance model to simulate ecosystem water vapour exchange in terrestrial biosphere models.


Assuntos
Luz , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Plastoquinona/metabolismo , Ritmo Circadiano/efeitos da radiação , Fluorescência , Modelos Biológicos , Movimento , Oxirredução/efeitos da radiação , Fotossíntese/efeitos da radiação , Reprodutibilidade dos Testes
12.
Plant Cell Environ ; 39(4): 908-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26670088

RESUMO

Stable transformation of plants is a powerful tool for hypothesis testing. A rapid and reliable evaluation method of the transgenic allele for copy number and homozygosity is vital in analysing these transformations. Here the suitability of Southern blot analysis, thermal asymmetric interlaced (TAIL-)PCR, quantitative (q)PCR and digital droplet (dd)PCR to estimate T-DNA copy number, locus complexity and homozygosity were compared in transgenic tobacco. Southern blot analysis and ddPCR on three generations of transgenic offspring with contrasting zygosity and copy number were entirely consistent, whereas TAIL-PCR often underestimated copy number. qPCR deviated considerably from the Southern blot results and had lower precision and higher variability than ddPCR. Comparison of segregation analyses and ddPCR of T1 progeny from 26 T0 plants showed that at least 19% of the lines carried multiple T-DNA insertions per locus, which can lead to unstable transgene expression. Segregation analyses failed to detect these multiple copies, presumably because of their close linkage. This shows the importance of routine T-DNA copy number estimation. Based on our results, ddPCR is the most suitable method, because it is as reliable as Southern blot analysis yet much faster. A protocol for this application of ddPCR to large plant genomes is provided.


Assuntos
Southern Blotting/métodos , DNA Bacteriano/genética , Dosagem de Genes , Nicotiana/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Segregação de Cromossomos/genética , Cruzamentos Genéticos , Loci Gênicos , Homozigoto , Plantas Geneticamente Modificadas , Reprodutibilidade dos Testes
13.
Ann Bot ; 115(6): 981-90, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25851133

RESUMO

BACKGROUND AND AIMS: A clone of the hybrid perennial C4 grass Miscanthus × giganteus (Mxg) is known for achieving exceptionally high rates of leaf CO2 uptake during chilling. This is a requisite of success in the early spring, as is the ability of the leaves to survive occasional frosts. The aim of this study was to search for genotypes with greater potential than Mxg for photosynthesis and frost survival under these conditions. METHODS: A total of 864 accessions representing 164 local populations of M. sacchariflorus (Msa), M. sinensis (Msi) and M. tinctorius (Mti) collected across Japan were studied. Accessions whose leaves survived a natural late frost in the field were screened for high maximum photosystem II efficiency (Fv/Fm) following chilling weather, as an indicator of their capacity for light-limited photosynthesis. Those showing the highest Fv/Fm were transferred to a high-light-controlled environment and maintained at chilling temperatures, where they were further screened for their capacities for high-light-limited and light-saturated leaf uptake of CO2 (ΦCO2,max and Asat, respectively). KEY RESULTS: For the first time, relatives of Mxg with significantly superior capacities for photosynthesis at chilling temperatures were identified. Msa accession '73/2' developed leaves in the spring that survived night-time frost, and during growth under chilling maintained a statistically significant 79 % higher ΦCO2,max, as a measure of light-limited photosynthesis, and a 70 % higher Asat, as a measure of light-saturated photosynthesis. A second Msa accession, '73/3' also showed significantly higher rates of leaf uptake of CO2. CONCLUSIONS: As remarkable as Mxg has proved in its chilling tolerance of C4 photosynthesis, this study shows that there is still value and potential in searching for yet more superior tolerance. Msa accession '73/2' shows rates of light-limited and light-saturated photosynthesis at chilling temperatures that are comparable with those of the most cold-tolerant C3 species. This adds further proof to the thesis that C4 photosynthesis is not inherently limited to warm climates.


Assuntos
Adaptação Fisiológica , Cruzamentos Genéticos , Congelamento , Fotossíntese , Poaceae/fisiologia , Banco de Sementes , Ar , Dióxido de Carbono/metabolismo , Ecótipo , Japão , Fótons , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/fisiologia , Solo , Temperatura
14.
J Exp Bot ; 65(18): 5267-78, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25039073

RESUMO

The goal of this study was to identify cold-tolerant genotypes within two species of Miscanthus related to the exceptionally chilling-tolerant C4 biomass crop accession: M. ×giganteus 'Illinois' (Mxg) as well as in other Mxg genotypes. The ratio of leaf elongation at 10 °C/5 °C to that at 25 °C/25 °C was used to identify initially the 13 most promising Miscanthus genotypes out of 51 studied. Net leaf CO2 uptake (A sat) and the maximum operating efficiency of photosystem II (ФPSII) were measured in warm conditions (25 °C/20 °C), and then during and following a chilling treatment of 10 °C/5 °C for 11 d. Accessions of M. sacchariflorus (Msa) showed the smallest decline in leaf elongation on transfer to chilling conditions and did not differ significantly from Mxg, indicating greater chilling tolerance than diploid M. sinensis (Msi). Msa also showed the smallest reductions in A sat and ФPSII, and greater chilling-tolerant photosynthesis than Msi, and three other forms of Mxg, including new triploid accessions and a hexaploid Mxg 'Illinois'. Tetraploid Msa 'PF30153' collected in Gifu Prefecture in Honshu, Japan did not differ significantly from Mxg 'Illinois' in leaf elongation and photosynthesis at low temperature, but was significantly superior to all other forms of Mxg tested. The results suggested that the exceptional chilling tolerance of Mxg 'Illinois' cannot be explained simply by the hybrid vigour of this intraspecific allotriploid. Selection of chilling-tolerant accessions from both of Mxg's parental species, Msi and Msa, would be advisable for breeding new highly chilling-tolerant Mxg genotypes.


Assuntos
Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Genótipo
15.
Ann Bot ; 114(1): 97-107, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24918203

RESUMO

BACKGROUND AND AIMS: Miscanthus is a perennial C4 grass that is a leading potential feedstock crop for the emerging bioenergy industry in North America, Europe and China. However, only a single, sterile genotype of M. × giganteus (M×g), a nothospecies derived from diploid M. sinensis (Msi) and tetraploid M. sacchariflorus (Msa), is currently available to farmers for biomass production. To facilitate breeding of Miscanthus, this study characterized genetic diversity and population structure of Msi in its native range of East Asia. METHODS: A total of 767 accessions were studied, including 617 Msi from most of its native range in China, Japan and South Korea, and 77 ornamental cultivars and 43 naturalized individuals from the USA. Accessions were evaluated with 21 207 restriction site-associated DNA sequencing single nucleotide polymorphism (SNP) markers, 424 GoldenGate SNPs and ten plastid microsatellite markers. KEY RESULTS: Six genetic clusters of Msi from geographically distinct regions in Asia were identified. Genetic data indicated that (1) south-eastern China was the origin of Msi populations found in temperate eastern Asia, which is consistent with this area probably having been a refugium during the last glacial maximum (LGM); (2) Msi migrated directly from south-eastern China to Japan before migrating to the same latitudes in China and Korea, which is consistent with the known sequence of warming post-LGM; (3) ornamental Msi cultivars were derived from the southern Japan population, and US naturalized populations were derived from a sub-set of the ornamental cultivars; and (4) many ornamental cultivars previously described as Msi have hybrid ancestry from Msa and Msi, whereas US naturalized populations of Msi do not. CONCLUSIONS: Population structure of Msi was driven by patterns of warming since the LGM, and secondarily by geographical barriers. This study will facilitate germplasm conservation, association analyses and identification of potential heterotic groups for the improvement of Miscanthus as a bioenergy crop.


Assuntos
Variação Genética , Poaceae/genética , Ásia , Sequência de Bases , Cruzamento , Mudança Climática , Metabolismo Energético , Genética Populacional , Genótipo , Geografia , Repetições de Microssatélites/genética , Filogenia , Plastídeos/genética , Poaceae/fisiologia , Polimorfismo de Nucleotídeo Único , Estados Unidos
16.
J Plant Physiol ; 297: 154261, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705078

RESUMO

Non-photochemical quenching (NPQ) protects plants from photodamage caused by excess light energy. Substantial variation in NPQ has been reported among different genotypes of the same species. However, comparatively little is known about how environmental perturbations, including nutrient deficits, impact natural variation in NPQ kinetics. Here, we analyzed a natural variation in NPQ kinetics of a diversity panel of 225 maize (Zea mays L.) genotypes under nitrogen replete and nitrogen deficient field conditions. Individual maize genotypes from a diversity panel exhibited a range of changes in NPQ in response to low nitrogen. Replicated genotypes exhibited consistent responses across two field experiments conducted in different years. At the seedling and pre-flowering stages, a similar portion of the genotypes (∼33%) showed decrease, no-change or increase in NPQ under low nitrogen relative to control. Genotypes with increased NPQ under low nitrogen also showed greater reductions in dry biomass and photosynthesis than genotypes with stable NPQ when exposed to low nitrogen conditions. Maize genotypes where an increase in NPQ was observed under low nitrogen also exhibited a reduction in the ratio of chlorophyll a to chlorophyll b. Our results underline that since thermal dissipation of excess excitation energy measured via NPQ helps to balance the energy absorbed with energy utilized, the NPQ changes are the reflection of broader molecular and biochemical changes which occur under the stresses such as low soil fertility. Here, we have demonstrated that variation in NPQ kinetics resulted from genetic and environmental factors, are not independent of each other. Natural genetic variation controlling plastic responses of NPQ kinetics to environmental perturbation increases the likelihood it will be possible to optimize NPQ kinetics in crop plants for different environments.


Assuntos
Clorofila A , Clorofila , Genótipo , Nitrogênio , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiologia , Nitrogênio/metabolismo , Nitrogênio/deficiência , Clorofila/metabolismo , Clorofila A/metabolismo , Fotossíntese
17.
ACS Omega ; 9(13): 14899-14910, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585133

RESUMO

The current study aimed to investigate the impact of silicon (Si) supplementation in the form of Na2SiO3 on the metabolome of peas under normal conditions and following exposure to cadmium (Cd) stress. Si is known for its ability to enhance stress tolerance in various plant species, including the mitigation of heavy metal toxicity. Cd, a significant contaminant, poses risks to both human health and the environment. The study focused on analyzing the levels of bioactive compounds in different plant parts, including the shoot, root, and pod, to understand the influence of Si supplementation on their biosynthesis. Metabolomic analysis of pea samples was conducted using a targeted HPLC/MS approach, enabling the identification of 15 metabolites comprising 9 flavonoids and 6 phenolic acids. Among the detected compounds, flavonoids, such as flavon and quercetin, along with phenolic acids, including chlorogenic acid and salicylic acid, were found in significant quantities. The study compared Si supplementation at concentrations of 1 and 2 mM, as well as Cd stress conditions, to evaluate their effects on the metabolomic profile. Additionally, the study explored the extraction efficiency of three different methods: accelerated solvent extraction (ASE), supercritical fluid extraction (SFE), and maceration (MAC). The results revealed that SFE was the most efficient method for extracting polyphenolic compounds from the pea samples. Moreover, the study investigated the stability of polyphenolic compounds under different pH conditions, ranging from 4.0 to 6.0, providing insights into the influence of the pH on the extraction and stability of bioactive compounds.

18.
iScience ; 27(5): 109774, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38711443

RESUMO

Ferroptosis is a cell death pathway that can be promoted by peroxidizable polyunsaturated fatty acids in cancer cells. Here, we investigated the mechanisms underlying the toxicity of punicic acid (PunA), an isomer of conjugated linolenic acids (CLnAs) bearing three conjugated double bonds highly prone to peroxidation, on prostate cancer (PCa) cells. PunA induced ferroptosis in PCa cells and triggered massive lipidome remodeling, more strongly in PC3 androgen-negative cells than in androgen-positive cells. The greater sensitivity of androgen-negative cells to PunA was associated with lower expression of glutathione peroxidase 4 (GPX4). We then identified the phospholipase PLA2G7 as a PunA-induced ferroptosis suppressor in PCa cells. Overexpressing PLA2G7 decreased lipid peroxidation levels, suggesting that PLA2G7 hydrolyzes hydroperoxide-containing phospholipids, thus preventing ferroptosis. Importantly, overexpressing both PLA2G7 and GPX4 strongly prevented PunA-induced ferroptosis in androgen-negative PCa cells. This study shows that PLA2G7 acts complementary to GPX4 to protect PCa cells from CLnA-induced ferroptosis.

19.
Int J Food Microbiol ; 397: 110211, 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37105049

RESUMO

Fusarium head blight (FHB), caused mainly by Fusarium graminearum, is one of the most dangerous diseases of durum wheat. This hemibiotrophic pathogen transitions from the biotrophic phase, during which it penetrates host tissues and secretes trichothecenes, to the necrotrophic phase which leads to the destruction of host tissues. Yeasts applied to spikes often reduce mycotoxin concentrations, but the underlying mechanisms have not been fully elucidated. Therefore, the aim of this study was to analyze the concentrations trichothecenes in durum wheat grain and changes in the F. graminearum transcriptome under the influence the Debaryomyces hansenii antagonistic yeast strain. Debaryomyces hansenii cells adhered to and formed cell aggregates/biofilm on the surface of spikes and pathogenic hyphae. Biological control suppressed the spread of F. graminearum by 90 % and decreased the content of deoxynivalenol (DON) in spikes by 31.2 %. Yeasts significantly reduced the expression of pathogen's genes encoding the rpaI subunit of RNA polymerase I and the activator of Hsp90 ATPase, but they had no effect on mRNA transcript levels of genes encoding the enzymes involved in the biosynthesis of trichothecenes. The yeast treatment reduced the number of F. graminearum operational taxonomic units (OTUs) nearly five-fold and increased the number of D. hansenii OTUs more than six-fold in the spike mycobiome. The mechanisms that suppress infections should be explored to develop effective biological methods for reducing the concentrations mycotoxins in wheat grain.


Assuntos
Debaryomyces , Fusarium , Micotoxinas , Tricotecenos , Tricotecenos/análise , Fusarium/metabolismo , Triticum/metabolismo , Debaryomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Doenças das Plantas , Micotoxinas/análise , Grão Comestível/química
20.
BMC Genomics ; 13: 142, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22524439

RESUMO

BACKGROUND: Miscanthus (subtribe Saccharinae, tribe Andropogoneae, family Poaceae) is a genus of temperate perennial C4 grasses whose high biomass production makes it, along with its close relatives sugarcane and sorghum, attractive as a biofuel feedstock. The base chromosome number of Miscanthus (x = 19) is different from that of other Saccharinae and approximately twice that of the related Sorghum bicolor (x = 10), suggesting large-scale duplications may have occurred in recent ancestors of Miscanthus. Owing to the complexity of the Miscanthus genome and the complications of self-incompatibility, a complete genetic map with a high density of markers has not yet been developed. RESULTS: We used deep transcriptome sequencing (RNAseq) from two M. sinensis accessions to define 1536 single nucleotide variants (SNVs) for a GoldenGate™ genotyping array, and found that simple sequence repeat (SSR) markers defined in sugarcane are often informative in M. sinensis. A total of 658 SNP and 210 SSR markers were validated via segregation in a full sibling F1 mapping population. Using 221 progeny from this mapping population, we constructed a genetic map for M. sinensis that resolves into 19 linkage groups, the haploid chromosome number expected from cytological evidence. Comparative genomic analysis documents a genome-wide duplication in Miscanthus relative to Sorghum bicolor, with subsequent insertional fusion of a pair of chromosomes. The utility of the map is confirmed by the identification of two paralogous C4-pyruvate, phosphate dikinase (C4-PPDK) loci in Miscanthus, at positions syntenic to the single orthologous gene in Sorghum. CONCLUSIONS: The genus Miscanthus experienced an ancestral tetraploidy and chromosome fusion prior to its diversification, but after its divergence from the closely related sugarcane clade. The recent timing of this tetraploidy complicates discovery and mapping of genetic markers for Miscanthus species, since alleles and fixed differences between paralogs are comparable. These difficulties can be overcome by careful analysis of segregation patterns in a mapping population and genotyping of doubled haploids. The genetic map for Miscanthus will be useful in biological discovery and breeding efforts to improve this emerging biofuel crop, and also provide a valuable resource for understanding genomic responses to tetraploidy and chromosome fusion.


Assuntos
Mapeamento Cromossômico/métodos , Perfilação da Expressão Gênica , Poaceae/genética , Tetraploidia , Alelos , Biomassa , Cruzamento , Duplicação Cromossômica/genética , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Loci Gênicos/genética , Marcadores Genéticos/genética , Genômica , Técnicas de Genotipagem , Haploidia , Repetições de Microssatélites/genética , Poaceae/citologia , Poaceae/enzimologia , Polimorfismo de Nucleotídeo Único/genética , Piruvato Ortofosfato Diquinase/genética , Homologia de Sequência do Ácido Nucleico , Sorghum/genética , Sintenia/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa