Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Landsc Ecol ; 37(6): 1573-1586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611158

RESUMO

Context: Flowering plants can enhance wild insect populations and their pollination services to crops in agricultural landscapes, especially when they flower before the focal crop. However, characterizing the temporal availability of specific floral resources is a challenge. Objectives: Developing an index for the availability of floral resources at the landscape scale according to the specific use by a pollinator. Investigating whether detailed and temporally-resolved floral resource maps predict pollination success of broad bean better than land cover maps. Methods: We mapped plant species used as pollen source by bumblebees in 24 agricultural landscapes and developed an index of floral resource availability for different times of the flowering season. To measure pollination success, patches of broad bean (Vicia faba), a plant typically pollinated by bumblebees, were exposed in the center of selected landscapes. Results: Higher floral resource availability before bean flowering led to enhanced seed set. Floral resource availability synchronous to broad bean flowering had no effect. Seed set was somewhat better explained by land cover maps than by floral resource availability, increasing with urban area and declining with the cover of arable land. Conclusions: The timing of alternative floral resource availability is important for crop pollination. The higher explanation of pollination success by land cover maps than by floral resource availability indicates that additional factors such as habitat disturbance and nesting sites play a role in pollination. Enhancing non-crop woody plants in agricultural landscapes as pollen sources may ensure higher levels of crop pollination by wild pollinators such as bumblebees. Supplementary information: The online version contains supplementary material available at 10.1007/s10980-022-01448-2.

2.
Veg Hist Archaeobot ; 31(2): 155-170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273429

RESUMO

Observing natural vegetation dynamics over the entire Holocene is difficult in Central Europe, due to pervasive and increasing human disturbance since the Neolithic. One strategy to minimize this limitation is to select a study site in an area that is marginal for agricultural activity. Here, we present a new sediment record from Lake Svityaz in northwestern Ukraine. We have reconstructed regional and local vegetation and fire dynamics since the Late Glacial using pollen, spores, macrofossils and charcoal. Boreal forest composed of Pinus sylvestris and Betula with continental Larix decidua and Pinus cembra established in the region around 13,450 cal bp, replacing an open, steppic landscape. The first temperate tree to expand was Ulmus at 11,800 cal bp, followed by Quercus, Fraxinus excelsior, Tilia and Corylus ca. 1,000 years later. Fire activity was highest during the Early Holocene, when summer solar insolation reached its maximum. Carpinus betulus and Fagus sylvatica established at ca. 6,000 cal bp, coinciding with the first indicators of agricultural activity in the region and a transient climatic shift to cooler and moister conditions. Human impact on the vegetation remained initially very low, only increasing during the Bronze Age, at ca. 3,400 cal bp. Large-scale forest openings and the establishment of the present-day cultural landscape occurred only during the past 500 years. The persistence of highly diverse mixed forest under absent or low anthropogenic disturbance until the Early Middle Ages corroborates the role of human impact in the impoverishment of temperate forests elsewhere in Central Europe. The preservation or reestablishment of such diverse forests may mitigate future climate change impacts, specifically by lowering fire risk under warmer and drier conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s00334-021-00844-z.

3.
Veg Hist Archaeobot ; 30(6): 789-813, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720442

RESUMO

Knowledge about the vegetation history of Sardinia, the second largest island of the Mediterranean, is scanty. Here, we present a new sedimentary record covering the past ~ 8,000 years from Lago di Baratz, north-west Sardinia. Vegetation and fire history are reconstructed by pollen, spores, macrofossils and charcoal analyses and environmental dynamics by high-resolution element geochemistry together with pigment analyses. During the period 8,100-7,500 cal bp, when seasonality was high and fire and erosion were frequent, Erica arborea and E. scoparia woodlands dominated the coastal landscape. Subsequently, between 7,500 and 5,500 cal bp, seasonality gradually declined and thermo-mediterranean woodlands with Pistacia and Quercus ilex partially replaced Erica communities under diminished incidence of fire. After 5,500 cal bp, evergreen oak forests expanded markedly, erosion declined and lake levels increased, likely in response to increasing (summer) moisture availability. Increased anthropogenic fire disturbance triggered shrubland expansions (e.g. Tamarix and Pistacia) around 5,000-4,500 cal bp. Subsequently around 4,000-3,500 cal bp evergreen oak-olive forests expanded massively when fire activity declined and lake productivity and anoxia reached Holocene maxima. Land-use activities during the past 4,000 years (since the Bronze Age) gradually disrupted coastal forests, but relict stands persisted under rather stable environmental conditions until ca. 200 cal bp, when agricultural activities intensified and Pinus and Eucalyptus were planted to stabilize the sand dunes. Pervasive prehistoric land-use activities since at least the Bronze Age Nuraghi period included the cultivation of Prunus, Olea europaea and Juglans regia after 3,500-3,300 cal bp, and Quercus suber after 2,500 cal bp. We conclude that restoring less flammable native Q. ilex and O. europaea forest communities would markedly reduce fire risk and erodibility compared to recent forest plantations with flammable non-native trees (e.g. Pinus, Eucalyptus) and xerophytic shrubland (e.g. Cistus, Erica).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa