Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(41): e2207089119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191199

RESUMO

Remitted waves are used for sensing and imaging in diverse diffusive media from the Earth's crust to the human brain. Separating the source and detector increases the penetration depth of light, but the signal strength decreases rapidly, leading to a poor signal-to-noise ratio. Here, we show, experimentally and numerically, that wavefront shaping a laser beam incident on a diffusive sample enables an enhancement of remission by an order of magnitude at depths of up to 10 transport mean free paths. We develop a theoretical model which predicts the maximal remission enhancement. Our analysis reveals a significant improvement in the sensitivity of remitted waves to local changes of absorption deep inside diffusive media. This work illustrates the potential of coherent wavefront control for noninvasive diffuse wave imaging applications, such as diffuse optical tomography and functional near-infrared spectroscopy.


Assuntos
Encéfalo , Difusão , Humanos , Razão Sinal-Ruído
2.
Phys Rev Lett ; 123(20): 203901, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31809097

RESUMO

The optical memory effect has emerged as a powerful tool for imaging through multiple-scattering media; however, the finite angular range of the memory effect limits the field of view. Here, we demonstrate experimentally that selective coupling of incident light into a high-transmission channel increases the angular memory-effect range. This enhancement is attributed to the robustness of the high-transmission channels against perturbations such as sample tilt or wave front tilt. Our work shows that the high-transmission channels provide an enhanced field of view for memory-effect-based imaging through diffusive media.

3.
Phys Rev Lett ; 115(22): 223901, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26650306

RESUMO

Spatial modulation of the incident wave front has become a powerful method for controlling the diffusive transport of light in disordered media; however, such interference-based control is intrinsically sensitive to frequency detuning. Here, we show analytically and numerically that certain wave fronts can exhibit strongly enhanced total transmission or absorption across bandwidths that are orders of magnitude broader than the spectral correlation width of the speckles. Such broadband enhancement is possible due to long-range correlations in coherent diffusion, which cause the spectral degrees of freedom to scale as the square root of the bandwidth rather than the bandwidth itself.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa