Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36982493

RESUMO

In this work, new composite films were prepared by incorporating the disintegrated bacterial cellulose (BCd) nanofibers and cerium oxide nanoparticles into chitosan (CS) matrices. The influence of the amount of nanofillers on the structure and properties of the polymer composites and the specific features of the intermolecular interactions in the materials were determined. An increase in film stiffness was observed as a result of reinforcing the CS matrix with BCd nanofibers: the Young's modulus increased from 4.55 to 6.3 GPa with the introduction of 5% BCd. A further increase in Young's modulus of 6.7 GPa and a significant increase in film strength (22% increase in yield stress compared to the CS film) were observed when the BCd concentration was increased to 20%. The amount of nanosized ceria affected the structure of the composite, followed by a change in the hydrophilic properties and texture of the composite films. Increasing the amount of nanoceria to 8% significantly improved the biocompatibility of the films and their adhesion to the culture of mesenchymal stem cells. The obtained nanocomposite films combine a number of favorable properties (good mechanical strength in dry and swollen states, improved biocompatibility in relation to the culture of mesenchymal stem cells), which allows us to recommend them for use as a matrix material for the culture of mesenchymal stem cells and wound dressings.


Assuntos
Quitosana , Nanocompostos , Nanofibras , Quitosana/química , Celulose/química , Nanofibras/química , Resistência à Tração , Nanocompostos/química
2.
Luminescence ; 36(8): 1961-1968, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34355854

RESUMO

Several new 2,8-diphenylpyrido[3,2-g]quinoline-4,6-dicarbohydrazides were synthesized and copolyhydrazides based on them were obtained. Molecular weight, thermal, stress-strain and optical properties were investigated. It was shown that all polymer films exhibit significant luminescence in the 450-650 nm region, the profile and intensity of which depended on the nature and position of substituents in the phenylene fragment.


Assuntos
Quinolinas , Luminescência , Peso Molecular , Polímeros
3.
Luminescence ; 33(3): 559-566, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29493076

RESUMO

A series of anthrazoline-containing monomers are synthesized, and eight co-polyamides of different chemical structures, containing 1,9-anthrazoline fragments in the main chain, are obtained and investigated. Photoluminescent, stress-strain, and thermal properties of these polymers are studied. It is shown that polymers with fragments of 4,4'-(pyrido[3,2-g]-quinoline-2,8-diyl)dianiline and 4,4'-(10-methylpyrido[3,2-g]quinoline-2,8-diyl)dianiline possess an intense luminescence in the range 550-650 nm. The performed investigations made it possible to determine the effect of substituents of various natures in the anthrazoline cycle and the position of amide group (meta- and para-configurations) on optical, stress-strain, and thermal properties of copolymers, opening up a prospect for further developments of principles of design of polymers with optimal characteristics.


Assuntos
Nylons/química , Quinolinas/química , Técnicas de Química Sintética , Corantes Fluorescentes/química , Medições Luminescentes , Peso Molecular , Nylons/síntese química , Espectrofotometria Ultravioleta
4.
Soft Matter ; 10(8): 1224-32, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24652462

RESUMO

Due to the great importance for many industrial applications it is crucial from the point of view of theoretical description to reproduce thermal properties of thermoplastic polyimides as accurate as possible in order to establish "chemical structure-physical properties" relationships of new materials. In this paper we employ differential scanning calorimetry, dilatometry, and atomistic molecular dynamics (MD) simulations to explore whether the state-of-the-art computer modeling can serve as a precise tool for probing thermal properties of polyimides with highly polar groups. For this purpose the polyimide R-BAPS based on dianhydride 1,3-bis(3',4-dicarboxyphenoxy)benzene (dianhydride R) and diamine 4,4'-bis(4''-aminophenoxy)biphenyl sulphone) (diamine BAPS) was synthesized and extensively studied. Overall, our findings show that the widely used glass-transition temperature Tg evaluated from MD simulations should be employed with great caution for verification of the polyimide computational models against experimental data: in addition to the well-known impact of the cooling rate on the glass-transition temperature, correct definition of Tg requires cooling that starts from very high temperatures (no less than 800 K for considered polyimides) and accurate evaluation of the appropriate cooling rate, otherwise the errors in the measured values of Tg become undefined. In contrast to the glass-transition temperature, the volumetric coefficient of thermal expansion (CTE) does not depend on the cooling rate in the low-temperature domain (T < Tg) so that comparison of computational and experimental values of CTE provides a much safer way for proper validation of the theoretical model when electrostatic interactions are taken into account explicitly. Remarkably, this conclusion is most likely of generic nature: we show that it also holds for the commercial polyimide EXTEM, another polyimide with a similar chemical structure.

5.
Membranes (Basel) ; 13(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37623774

RESUMO

Aquivion®-type perfluorosulfonic acid membranes with a polytetrafluoroethylene backbone and short side chains with sulfonic acid groups at the ends have great prospects for operating in hydrogen fuel cells. To improve the conducting properties of membranes, various types of nanofillers can be used. We prepared compositional Aquivion®-type membranes with embedded detonation nanodiamond particles. Nanodiamonds were chemically modified with sulfonic acid groups to increase the entire amount of ionogenic groups involved in the proton conductivity mechanism in compositional membranes. We demonstrated the rise of proton conductivity at 0.5-2 wt.% of sulfonated nanodiamonds in membranes, which was accompanied by good mechanical properties. The basic structural elements, conducting channels in membranes, were not destroyed in the presence of nanodiamonds, as follows from small-angle neutron scattering data. The prepared compositional membranes can be used in hydrogen fuel cells to achieve improved performance.

6.
Polymers (Basel) ; 15(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37242873

RESUMO

In this paper, we report on novel polyimide (PI) nanocomposites filled with binary mixtures of metal oxide (either TiO2 or ZrO2) nanoparticles and nanocarbon (either carbon nanofibers (CNFs) or functionalized carbon nanotubes (CNTfs)). The structure and morphology of the materials obtained were comprehensively studied. An exhaustive investigation of their thermal and mechanical properties was performed. We revealed a synergistic effect of the nanoconstituents with regard to a number of functional characteristics of the PIs compared with single-filler nanocomposites, including thermal stability, stiffness (below and above glass transition temperature), yield point, and temperature of flowing. Moreover, the possibility of manipulating the properties of the materials by choosing a proper combination of the nanofillers was demonstrated. The results obtained can become a platform in the design of PI-based engineering materials with tailored characteristics capable of operating in extreme conditions.

7.
Int J Biol Macromol ; 229: 329-343, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36592852

RESUMO

Polymeric nanocomposite materials have great potential in the development of tissue-engineered scaffolds because they affect the structure and properties of polymeric materials and regulate cell proliferation and differentiation. In this work, cerium oxide nanoparticles (CeONPs) were incorporated into a chitosan (CS) film to improve the proliferation of multipotent mesenchymal stem cells (MSCs). The citrate-stabilized CeONPs with a negative ζ-potential (-25.0 mV) were precoated with CS to obtain positively charged particles (+20.3 mV) and to prevent their aggregation in the composite solution. The composite CS-CeONP films were prepared in the salt and basic forms using a dry-cast process. The films obtained in both forms were characterized by a uniform distribution of CeONPs. The incorporation of CeONPs into the salt form of CS increased the stiffness of the CS-CeONP film, while the subsequent conversion of the film to the basic form resulted in a decrease in both the Young's modulus and the yield stress. The redox activity (Ce4+ ⇌ Ce3+) of cerium oxide in the CS-CeONP film was confirmed by thermal oxidative degradation. In vitro culture of MSCs showed that the CS-CeONP film has good biocompatibility, and in vivo experiments demonstrated its substantial regenerative potential.


Assuntos
Cério , Quitosana , Nanopartículas , Quitosana/química , Nanopartículas/química , Alicerces Teciduais/química , Cério/farmacologia , Cério/química
8.
Polymers (Basel) ; 14(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35808624

RESUMO

A series of polyimide/metal oxide (either ZrO2 or TiO2) nanocomposite films were fabricated based on two polymer matrices. The prepared films were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction analysis (XRD), and their thermal and mechanical properties were investigated with the use of thermogravimetric (TGA), differential thermal analysis (DTA), and thermomechanical analysis (TMA). We have found out that functional properties of the obtained materials are determined by a number of factors, not only the type, size, surface functionality, and concentration of the nanofiller, but also the chemical structure of the matrix polyimide. We have demonstrated some trends in the thermal and mechanical behavior of the materials depending on these features. The data could be of great interest in the areas where new materials with improved functional characteristics are needed.

9.
Polymers (Basel) ; 14(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808742

RESUMO

Polysaccharide-based cryogels are promising materials for producing scaffolds in tissue engineering. In this work, we obtained ultralight (0.046-0.162 g/cm3) and highly porous (88.2-96.7%) cryogels with a complex hierarchical morphology by dissolving cellulose in phosphoric acid, with subsequent regeneration and freeze-drying. The effect of the cellulose dissolution temperature on phosphoric acid and the effect of the freezing time of cellulose hydrogels on the structure and properties of the obtained cryogels were studied. It has been shown that prolonged freezing leads to the formation of denser and stronger cryogels with a network structure. The incorporation of chitin nanowhiskers led to a threefold increase in the strength of the cellulose cryogels. The X-ray diffraction method showed that the regenerated cellulose was mostly amorphous, with a crystallinity of 26.8-28.4% in the structure of cellulose II. Cellulose cryogels with chitin nanowhiskers demonstrated better biocompatibility with mesenchymal stem cells compared to the normal cellulose cryogels.

10.
Polymers (Basel) ; 14(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36433128

RESUMO

A new biocompatible nanocomposite film material for cell engineering and other biomedical applications has been prepared. It is based on the composition of natural polysaccharides filled with cerium oxide nanoparticles (CeONPs). The preparative procedure consists of successive impregnations of pressed bacterial cellulose (BC) with a sodium alginate (ALG) solution containing nanoparticles of citrate-stabilized cerium oxide and a chitosan (CS) solution. The presence of CeONPs in the polysaccharide composite matrix and the interaction of the nanoparticles with the polymer, confirmed by IR spectroscopy, change the network architecture of the composite. This leads to noticeable changes in a number of properties of the material in comparison with those of the matrix's polysaccharide composition, viz., an increase in mechanical stiffness, a decrease in the degree of planar orientation of BC macrochains, an increase in hydrophilicity, and the shift of the processes of thermo-oxidative destruction of the material to a low-temperature region. The latter effect is considered to be caused by the redox activity of cerium oxide (reversible transitions between the states Ce4+ and Ce3+) in thermally stimulated processes in the nanocomposite films. In the equilibrium swollen state, the material retains a mechanical strength at the level of ~2 MPa. The results of in vitro tests (cultivation of multipotent mesenchymal stem cells) have demonstrated the good biocompatibility of the BC-ALG(CeONP)-CS film as cell proliferation scaffolds.

11.
Membranes (Basel) ; 12(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36135846

RESUMO

Compositional proton-conducting membranes based on perfluorinated Aquivion®-type copolymers modified by detonation nanodiamonds (DND) with positively charged surfaces were prepared to improve the performance of hydrogen fuel cells. Small-angle neutron scattering (SANS) experiments demonstrated the fine structure in such membranes filled with DND (0-5 wt.%), where the conducting channels typical for Aquivion® membranes are mostly preserved while DND particles (4-5 nm in size) decorated the polymer domains on a submicron scale, according to scanning electron microscopy (SEM) data. With the increase in DND content (0, 0.5, and 2.6 wt.%) the thermogravimetric analysis, potentiometry, potentiodynamic, and potentiotatic curves showed a stabilizing effect of the DNDs on the operational characteristics of the membranes. Membrane-electrode assemblies (MEA), working in the O2/H2 system with the membranes of different compositions, demonstrated improved functional properties of the modified membranes, such as larger operational stability, lower proton resistance, and higher current densities at elevated temperatures in the extended temperature range (22-120 °C) compared to pure membranes without additives.

12.
Materials (Basel) ; 14(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34576412

RESUMO

Cryogelation is a developing technique for the production of polysaccharide materials for biomedical applications. The formation of a macroporous structure during the freeze-drying of polysaccharide solutions creates biomaterials suitable for tissue engineering. Due to its availability, biocompatibility, biodegradability, and non-toxicity, chitin is a promising natural polysaccharide for the production of porous materials for tissue engineering; however, its use is limited due to the difficulty of dissolving it. This work describes the preparation of cryogels using phosphoric acid as the solvent. Compared to typical chitin solvents phosphoric acid can be easily removed from the product and recovered. The effects of chitin dissolution conditions on the structure and properties of cryogels were studied. Lightweight (ρ 0.025-0.059 g/cm3), highly porous (96-98%) chitin cryogels with various heterogeneous morphology were produced at a dissolution temperature of 20 ± 3 °C, a chitin concentration of 3-15%, and a dissolution time of 6-25 h. The crystallinity of the chitin and chitin cryogels was evaluated by 13C CP-MAS NMR spectroscopy and X-ray diffractometry. Using FTIR spectroscopy, no phosphoric acid esters were found in the chitin cryogels. The cryogels had compressive modulus E values from 118-345 kPa and specific surface areas of 0.3-0.7 m2/g. The results indicate that chitin cryogels can be promising biomaterials for tissue engineering.

13.
Polymers (Basel) ; 13(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207191

RESUMO

A technique for the fabrication of bacterial cellulose-based films with CeO2 nanofiller has been developed. The structural and morphological characteristics of the materials have been studied, their thermal and mechanical properties in dry and swollen states having been determined. The preparation methodology makes it possible to obtain composites with a uniform distribution of nanoparticles. The catalytic effect of ceria, regarding the thermal oxidative destruction of cellulose, has been confirmed by TGA and DTA methods. An increase in CeO2 content led to an increase in the elastic modulus (a 1.27-fold increase caused by the introduction of 5 wt.% of the nanofiller into the polymer) and strength of the films. This effect is explained by the formation of additional links between polymer macro-chains via the nanoparticles' surface. The materials fabricated were characterized by a limited ability to swell in water. Swelling caused a 20- to 30-fold reduction in the stiffness of the material, the mechanical properties of the films in a swollen state remaining germane to their practical use. The application of the composite films in cell engineering as substrates for the stem cells' proliferation has been studied. The increase in CeO2 content in the films enhanced the proliferative activity of embryonic mouse stem cells. The cells cultured on the scaffold containing 5 wt.% of ceria demonstrated increased cell survival and migration activity. An analysis of gene expression confirmed improved cultivation conditions on CeO2-containing scaffolds.

14.
Polymers (Basel) ; 12(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872303

RESUMO

To design novel polymer materials with optimal properties relevant to industrial usage, it would seem logical to modify polymers with reportedly good functionality, such as polyimides (PIs). We have created a set of PI-based nanocomposites containing binary blends of CeO2 with carbon nanoparticles (nanocones/discs or nanofibres), to improve a number of functional characteristics of the PIs. The prime novelty of this study is in a search for a synergistic effect amidst the nanofiller moieties regarding the thermal and the mechanical properties of PIs. In this paper, we report on the structure, thermal, and mechanical characteristics of the PI-based nanocomposites with binary fillers. We have found that, with a certain composition, the functional performance of a material can be substantially improved. For example, a PI containing SO2-groups in its macrochains not only had its thermal stability enhanced (by ~20 °C, 10% weight loss up to 533 °C) but also had its stiffness increased by more than 10% (Young's modulus as high as 2.9-3.0 GPa) in comparison with the matrix PI. In the case of a PI with no sulfonic groups, binary fillers increased stiffness of the polymer above its glass transition temperature, thereby widening its working temperature range. The mechanisms of these phenomena are discussed. Thus, this study could contribute to the design of new composite materials with controllable and improved functionality.

15.
Materials (Basel) ; 13(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066426

RESUMO

A series of novel polysaccharide-based biocomposites was obtained by impregnation of bacterial cellulose produced by Komagataeibacter rhaeticus (BC) with the solutions of negatively charged polysaccharides-hyaluronan (HA), sodium alginate (ALG), or κ-carrageenan (CAR)-and subsequently with positively charged chitosan (CS). The penetration of the polysaccharide solutions into the BC network and their interaction to form a polyelectrolyte complex changed the architecture of the BC network. The structure, morphology, and properties of the biocomposites depended on the type of impregnated anionic polysaccharides, and those polysaccharides in turn determined the nature of the interaction with CS. The porosity and swelling of the composites increased in the order: BC-ALG-CS > BC-HA-CS > BC-CAR-CS. The composites show higher biocompatibility with mesenchymal stem cells than the original BC sample, with the BC-ALG-CS composite showing the best characteristics.

16.
Materials (Basel) ; 12(12)2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31238491

RESUMO

A bilayer nonwoven material for tissue regeneration was prepared from chitosan (CS) and hyaluronic acid (HA) by needleless electrospinning wherein 10-15 wt% (with respect to polysaccharide) polyethylene oxide was added as spinning starter. A fiber morphology study confirmed the material's uniform defect-free structure. The roughness of the bilayer material was in the range of 1.5-3 µm, which is favorable for cell growth. Electrospinning resulted in the higher orientation of the polymer structure compared with that of corresponding films, and this finding may be related to the orientation of the polymer chains during the spinning process. These structural changes increased the intermolecular interactions. Thus, despite a high swelling degree of 1.4-2.8 g/g, the bilayer matrix maintained its shape due to the large quantity of polyelectrolyte contacts between the chains of oppositely charged polymers. The porosity of the bilayer CS-HA nonwoven material was twice lower, while the Young's modulus and break stress were twice higher than that of a CS monolayer scaffold. Therefore, during the electrospinning of the second layer, HA may have penetrated into the pores of the CS layer, thereby increasing the polyelectrolyte contacts between the two polymers. The bilayer CS-HA scaffold exhibited good compatibility with mesenchymal stem cells. This characteristic makes the developed material promising for tissue engineering applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa