Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Am Chem Soc ; 146(1): 386-398, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38158616

RESUMO

Single-walled carbon nanotubes (SWCNTs) with adsorbed single-stranded DNA (ssDNA) are applied as sensors to investigate biological systems, with potential applications ranging from clinical diagnostics to agricultural biotechnology. Unique ssDNA sequences render SWCNTs selectively responsive to target analytes such as (GT)n-SWCNTs recognizing the neuromodulator, dopamine. It remains unclear how the ssDNA conformation on the SWCNT surface contributes to functionality, as observations have been limited to computational models or experiments under dehydrated conditions that differ substantially from the aqueous biological environments in which the nanosensors are applied. We demonstrate a direct mode of measuring in-solution ssDNA geometries on SWCNTs via X-ray scattering interferometry (XSI), which leverages the interference pattern produced by AuNP tags conjugated to ssDNA on the SWCNT surface. We employ XSI to quantify distinct surface-adsorbed morphologies for two (GT)n ssDNA oligomer lengths (n = 6, 15) that are used on SWCNTs in the context of dopamine sensing and measure the ssDNA conformational changes as a function of ionic strength and during dopamine interaction. We show that the shorter oligomer, (GT)6, adopts a more periodically ordered ring structure along the SWCNT axis (inter-ssDNA distance of 8.6 ± 0.3 nm), compared to the longer (GT)15 oligomer (most probable 5'-to-5' distance of 14.3 ± 1.1 nm). During molecular recognition, XSI reveals that dopamine elicits simultaneous axial elongation and radial constriction of adsorbed ssDNA on the SWCNT surface. Our approach using XSI to probe solution-phase morphologies of polymer-functionalized SWCNTs can be applied to yield insights into sensing mechanisms and inform future design strategies for nanoparticle-based sensors.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Raios X , Dopamina , DNA , DNA de Cadeia Simples
2.
Proc Natl Acad Sci U S A ; 116(15): 7543-7548, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910954

RESUMO

Delivery of biomolecules to plants relies on Agrobacterium infection or biolistic particle delivery, the former of which is amenable only to DNA delivery. The difficulty in delivering functional biomolecules such as RNA to plant cells is due to the plant cell wall, which is absent in mammalian cells and poses the dominant physical barrier to biomolecule delivery in plants. DNA nanostructure-mediated biomolecule delivery is an effective strategy to deliver cargoes across the lipid bilayer of mammalian cells; however, nanoparticle-mediated delivery without external mechanical aid remains unexplored for biomolecule delivery across the cell wall in plants. Herein, we report a systematic assessment of different DNA nanostructures for their ability to internalize into cells of mature plants, deliver siRNAs, and effectively silence a constitutively expressed gene in Nicotiana benthamiana leaves. We show that nanostructure internalization into plant cells and corresponding gene silencing efficiency depends on the DNA nanostructure size, shape, compactness, stiffness, and location of the siRNA attachment locus on the nanostructure. We further confirm that the internalization efficiency of DNA nanostructures correlates with their respective gene silencing efficiencies but that the endogenous gene silencing pathway depends on the siRNA attachment locus. Our work establishes the feasibility of biomolecule delivery to plants with DNA nanostructures and both details the design parameters of importance for plant cell internalization and also assesses the impact of DNA nanostructure geometry for gene silencing mechanisms.


Assuntos
Brassicaceae , DNA de Plantas , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Técnicas de Transferência de Genes , Nanopartículas , Nicotiana , Plantas Geneticamente Modificadas , Brassicaceae/genética , Brassicaceae/metabolismo , DNA de Plantas/genética , DNA de Plantas/farmacologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/biossíntese , RNA de Plantas/genética , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , Nicotiana/genética , Nicotiana/metabolismo
3.
Nano Lett ; 21(13): 5859-5866, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34152779

RESUMO

RNA interference, which involves the delivery of small interfering RNA (siRNA), has been used to validate target genes, to understand and control cellular metabolic pathways, and to use as a "green" alternative to confer pest tolerance in crops. Conventional siRNA delivery methods such as viruses and Agrobacterium-mediated delivery exhibit plant species range limitations and uncontrolled DNA integration into the plant genome. Here, we synthesize polyethylenimine-functionalized gold nanoclusters (PEI-AuNCs) to mediate siRNA delivery into intact plants and show that these nanoclusters enable efficient gene knockdown. We further demonstrate that PEI-AuNCs protect siRNA from RNase degradation while the complex is small enough to bypass the plant cell wall. Consequently, AuNCs enable gene knockdown with efficiencies of up 76.5 ± 5.9% and 76.1 ± 9.5% for GFP and ROQ1, respectively, with no observable toxicity. Our data suggest that AuNCs can deliver siRNA into intact plant cells for broad applications in plant biotechnology.


Assuntos
Ouro , Células Vegetais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Polietilenoimina , RNA Interferente Pequeno/genética
4.
Commun Biol ; 6(1): 840, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573467

RESUMO

Using a fluorescence complementation assay, Delivered Complementation in Planta (DCIP), we demonstrate cell-penetrating peptide-mediated cytosolic delivery of peptides and recombinant proteins in Nicotiana benthamiana. We show that DCIP enables quantitative measurement of protein delivery efficiency and enables functional screening of cell-penetrating peptides for in-planta protein delivery. Finally, we demonstrate that DCIP detects cell-penetrating peptide-mediated delivery of recombinantly expressed proteins such as mCherry and Lifeact into intact leaves. We also demonstrate delivery of a recombinant plant transcription factor, WUSCHEL (AtWUS), into N. benthamiana. RT-qPCR analysis of AtWUS delivery in Arabidopsis seedlings also suggests delivered WUS can recapitulate transcriptional changes induced by overexpression of AtWUS. Taken together, our findings demonstrate that DCIP offers a new and powerful tool for interrogating cytosolic delivery of proteins in plants and highlights future avenues for engineering plant physiology.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fluorescência , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
5.
Nat Nanotechnol ; 17(2): 197-205, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34811553

RESUMO

Rapidly growing interest in the nanoparticle-mediated delivery of DNA and RNA to plants requires a better understanding of how nanoparticles and their cargoes translocate in plant tissues and into plant cells. However, little is known about how the size and shape of nanoparticles influence transport in plants and the delivery efficiency of their cargoes, limiting the development of nanotechnology in plant systems. In this study we employed non-biolistically delivered DNA-modified gold nanoparticles (AuNPs) of various sizes (5-20 nm) and shapes (spheres and rods) to systematically investigate their transport following infiltration into Nicotiana benthamiana leaves. Generally, smaller AuNPs demonstrated more rapid, higher and longer-lasting levels of association with plant cell walls compared with larger AuNPs. We observed internalization of rod-shaped but not spherical AuNPs into plant cells, yet, surprisingly, 10 nm spherical AuNPs functionalized with small-interfering RNA (siRNA) were the most efficient at siRNA delivery and inducing gene silencing in mature plant leaves. These results indicate the importance of nanoparticle size in efficient biomolecule delivery and, counterintuitively, demonstrate that efficient cargo delivery is possible and potentially optimal in the absence of nanoparticle cellular internalization. Overall, our results highlight nanoparticle features of importance for transport within plant tissues, providing a mechanistic overview of how nanoparticles can be designed to achieve efficacious biocargo delivery for future developments in plant nanobiotechnology.


Assuntos
DNA/farmacologia , Nanopartículas Metálicas/química , Nicotiana/genética , RNA Interferente Pequeno/genética , DNA/química , Inativação Gênica , Técnicas de Transferência de Genes , Ouro/química , Ouro/farmacologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacologia , Nicotiana/crescimento & desenvolvimento
6.
ACS Nano ; 16(2): 1802-1812, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34935350

RESUMO

Nanomaterials have emerged as an invaluable tool for the delivery of biomolecules such as DNA and RNA, with various applications in genetic engineering and post-transcriptional genetic manipulation. Alongside this development, there has been an increasing use of polymer-based techniques, such as polyethylenimine (PEI), to electrostatically load polynucleotide cargoes onto nanomaterial carriers. However, there remains a need to assess nanomaterial properties, conjugation conditions, and biocompatibility of these nanomaterial-polymer constructs, particularly for use in plant systems. In this work, we develop mechanisms to optimize DNA loading on single-walled carbon nanotubes (SWNTs) with a library of polymer-SWNT constructs and assess DNA loading ability, polydispersity, and both chemical and colloidal stability. Counterintuitively, we demonstrate that polymer hydrolysis from nanomaterial surfaces can occur depending on polymer properties and attachment chemistries, and we describe mitigation strategies against construct degradation. Given the growing interest in delivery applications in plant systems, we also assess the stress response of plants to polymer-based nanomaterials and provide recommendations for future design of nanomaterial-based polynucleotide delivery strategies.


Assuntos
Nanotubos de Carbono , DNA , Nanotubos de Carbono/química , Polietilenoimina/química , Polímeros/química , RNA
7.
ACS Sens ; 6(8): 2802-2814, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34279907

RESUMO

Climate change and population growth are straining agricultural output. To counter these changes and meet the growing demand for food and energy, the monitoring and engineering of crops are becoming increasingly necessary. Nanoparticle-based sensors have emerged in recent years as new tools to advance agricultural practices. As these nanoparticle-based sensors enter and travel through the complex biofluids within plants, biomolecules including proteins, metabolites, lipids, and carbohydrates adsorb onto the nanoparticle surfaces, forming a coating known as the "bio-corona". Understanding these nanoparticle-biomolecule interactions that govern nanosensor function in plants will be essential to successfully develop and translate nanoparticle-based sensors into broader agricultural practice.


Assuntos
Nanopartículas , Proteínas
8.
Curr Opin Plant Biol ; 60: 102052, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33984712

RESUMO

Delivery of proteins into walled plant cells remains a challenge with few tractable solutions. Recent advances in biomacromolecule delivery using nanotechnology may evince methods to be exploited for protein delivery. While protein delivery remains no small feat, even in mammalian systems, the ability for nanoparticles to penetrate the cell wall and be decorated with a plethora of functional moieties makes them ideal protein vehicles in plants. As advances in protein biotechnology accelerate, so does the need for commensurate delivery systems. However, the road to nanoparticle-mediated protein delivery is fraught with challenges in regard to cell wall penetration, intracellular delivery, endosomal escape, and nanoparticle chemistry and design. The dearth of literature surrounding protein delivery in walled plant cells hints at the challenge of this problem but also indicates vast opportunity for innovations in plant-tailored nanotechnology.


Assuntos
Nanopartículas , Animais , Endossomos , Nanotecnologia , Plantas
9.
Methods Mol Biol ; 2124: 141-159, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32277452

RESUMO

Biolistic delivery of biomolecular cargoes to plants with micron-scale projectiles is a well-established technique in plant biotechnology. However, the relatively large micron-scale biolistic projectiles can result in tissue damage, low regeneration efficiency, and create difficulties for the biolistic transformation of isomorphic small cells or subcellular target organelles (i.e., mitochondria and plastids). As an alternative to micron-sized carriers, nanomaterials provide a promising approach for biomolecule delivery to plants. While most studies exploring nanoscale biolistic carriers have been carried out in animal cells and tissues, which lack a cell wall, we can nonetheless extrapolate their utility for nanobiolistic delivery of biomolecules in plant targets. Specifically, nanobiolistics has shown promising results for use in animal systems, in which nanoscale projectiles yield lower levels of cell and tissue damage while maintaining similar transformation efficiencies as their micron-scale counterparts. In this chapter, we specifically discuss biolistic delivery of nanoparticles for plant genetic transformation purposes and identify the figures of merit requiring optimization for broad-scale implementation of nanobiolistics in plant genetic transformations.


Assuntos
Biolística/métodos , Nanopartículas/química , Transformação Genética , Animais , Ouro/química , Plantas/genética
10.
Sci Adv ; 6(26): eaaz0495, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32637592

RESUMO

Posttranscriptional gene silencing (PTGS) is a powerful tool to understand and control plant metabolic pathways, which is central to plant biotechnology. PTGS is commonly accomplished through delivery of small interfering RNA (siRNA) into cells. Standard plant siRNA delivery methods (Agrobacterium and viruses) involve coding siRNA into DNA vectors and are only tractable for certain plant species. Here, we develop a nanotube-based platform for direct delivery of siRNA and show high silencing efficiency in intact plant cells. We demonstrate that nanotubes successfully deliver siRNA and silence endogenous genes, owing to effective intracellular delivery and nanotube-induced protection of siRNA from nuclease degradation. This study establishes that nanotubes could enable a myriad of plant biotechnology applications that rely on RNA delivery to intact cells.


Assuntos
Inativação Gênica , Células Vegetais , Carbono/metabolismo , Técnicas de Silenciamento de Genes , Células Vegetais/metabolismo , Plantas/genética , Plantas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
11.
Nat Protoc ; 14(10): 2954-2971, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31534231

RESUMO

Exogenous biomolecule delivery into plants is difficult because the plant cell wall poses a dominant transport barrier, thereby limiting the efficiency of plant genetic engineering. Traditional DNA delivery methods for plants suffer from host-species limitations, low transformation efficiencies, tissue damage, or unavoidable and uncontrolled DNA integration into the host genome. We have demonstrated efficient plasmid DNA delivery into intact plants of several species with functionalized high-aspect-ratio carbon nanotube (CNT) nanoparticles (NPs), enabling efficient DNA delivery into a variety of non-model plant species (arugula, wheat, and cotton) and resulting in high protein expression levels without transgene integration. Herein, we provide a protocol that can be implemented by plant biologists and adapted to produce functionalized single-walled CNTs (SWNTs) with surface chemistries optimized for delivery of plasmid DNA in a plant species-independent manner. This protocol describes how to prepare, construct, and optimize polyethylenimine (PEI)-functionalized SWNTs and perform plasmid DNA loading. The authors also provide guidance on material characterization, gene expression evaluation, and storage conditions. The entire protocol, from the covalent functionalization of SWNTs to expression quantification, can be completed in 5 d.


Assuntos
DNA/genética , Técnicas de Transferência de Genes , Nanotubos de Carbono , Plantas/genética , Produtos Agrícolas/genética , Nanotubos de Carbono/química , Plantas Geneticamente Modificadas , Plasmídeos/genética , Polietilenoimina/química , Transgenes
12.
Nat Nanotechnol ; 14(5): 456-464, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30804481

RESUMO

Genetic engineering of plants is at the core of sustainability efforts, natural product synthesis and crop engineering. The plant cell wall is a barrier that limits the ease and throughput of exogenous biomolecule delivery to plants. Current delivery methods either suffer from host-range limitations, low transformation efficiencies, tissue damage or unavoidable DNA integration into the host genome. Here, we demonstrate efficient diffusion-based biomolecule delivery into intact plants of several species with pristine and chemically functionalized high aspect ratio nanomaterials. Efficient DNA delivery and strong protein expression without transgene integration is accomplished in Nicotiana benthamiana (Nb), Eruca sativa (arugula), Triticum aestivum (wheat) and Gossypium hirsutum (cotton) leaves and arugula protoplasts. We find that nanomaterials not only facilitate biomolecule transport into plant cells but also protect polynucleotides from nuclease degradation. Our work provides a tool for species-independent and passive delivery of genetic material, without transgene integration, into plant cells for diverse biotechnology applications.


Assuntos
Técnicas de Transferência de Genes , Gossypium/genética , Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Transgenes , Triticum/genética , Gossypium/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Protoplastos/metabolismo , Nicotiana/metabolismo , Triticum/metabolismo
13.
Trends Biotechnol ; 36(9): 882-897, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29703583

RESUMO

Genetic engineering of plants has enhanced crop productivity in the face of climate change and a growing global population by conferring desirable genetic traits to agricultural crops. Efficient genetic transformation in plants remains a challenge due to the cell wall, a barrier to exogenous biomolecule delivery. Conventional delivery methods are inefficient, damaging to tissue, or are only effective in a limited number of plant species. Nanoparticles are promising materials for biomolecule delivery, owing to their ability to traverse plant cell walls without external force and highly tunable physicochemical properties for diverse cargo conjugation and broad host range applicability. With the advent of engineered nuclease biotechnologies, we discuss the potential of nanoparticles as an optimal platform to deliver biomolecules to plants for genetic engineering.


Assuntos
Agrobacterium tumefaciens/genética , Produtos Agrícolas/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Nanopartículas/metabolismo , Plantas Geneticamente Modificadas , Biolística/instrumentação , Biolística/métodos , Parede Celular/química , Parede Celular/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Eletroporação/instrumentação , Eletroporação/métodos , Genoma de Planta , Regulamentação Governamental , Humanos , Microinjeções/instrumentação , Microinjeções/métodos , Nanopartículas/química , Células Vegetais/química , Células Vegetais/metabolismo , Transformação Genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa