Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Br J Cancer ; 124(3): 604-615, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139797

RESUMO

BACKGROUND: To circumvent Warburg effect, several clinical trials for different cancers are utilising a combinatorial approach using metabolic reprogramming and chemotherapeutic agents including metformin. The majority of these metabolic interventions work via indirectly activating AMP-activated protein kinase (AMPK) to alter cellular metabolism in favour of oxidative phosphorylation over aerobic glycolysis. The effect of these drugs is dependent on glycaemic and insulin conditions.  Therefore, development of small molecules, which can activate AMPK, irrespective of the energy state, may be a better approach for triple-negative breast cancer (TNBC) treatment. METHODS: Therapeutic effect of SU212 on TNBC cells was examined using in vitro and in vivo models. RESULTS: We developed and characterised the efficacy of novel AMPK activator (SU212) that selectively induces oxidative phosphorylation and decreases glycolysis in TNBC cells, while not affecting these pathways in normal cells.   SU212 accomplished this metabolic reprogramming by activating AMPK independent of energy stress and irrespective of the glycaemic/insulin state. This leads to mitotic phase arrest and apoptosis in TNBC cells. In vivo, SU212 inhibits tumour growth, cancer progression and metastasis. CONCLUSIONS: SU212 directly activates AMPK in TNBC cells, but does not hamper glucose metabolism in normal cells. Our study provides compelling preclinical data for further development of SU212 for the treatment of TNBC.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Morte Celular , Fosforilação Oxidativa/efeitos dos fármacos , Podofilotoxina/análogos & derivados , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Ativação Enzimática/efeitos dos fármacos , Feminino , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Ácido Láctico/metabolismo , Lipogênese/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Distribuição Aleatória , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Efeito Warburg em Oncologia
2.
Proc Natl Acad Sci U S A ; 113(42): E6457-E6466, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27694579

RESUMO

Metastatic castration-resistant prostate cancer (CRPC) is the primary cause of prostate cancer-specific mortality. Defining new mechanisms that can predict recurrence and drive lethal CRPC is critical. Here, we demonstrate that localized high-risk prostate cancer and metastatic CRPC, but not benign prostate tissues or low/intermediate-risk prostate cancer, express high levels of nuclear Notch homolog 1, translocation-associated (Notch1) receptor intracellular domain. Chronic activation of Notch1 synergizes with multiple oncogenic pathways altered in early disease to promote the development of prostate adenocarcinoma. These tumors display features of epithelial-to-mesenchymal transition, a cellular state associated with increased tumor aggressiveness. Consistent with its activation in clinical CRPC, tumors driven by Notch1 intracellular domain in combination with multiple pathways altered in prostate cancer are metastatic and resistant to androgen deprivation. Our study provides functional evidence that the Notch1 signaling axis synergizes with alternative pathways in promoting metastatic CRPC and may represent a new therapeutic target for advanced prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Biomarcadores , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Expressão Gênica , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Proteínas Quinases Ativadas por Mitógeno , Gradação de Tumores , Metástase Neoplásica , Fenótipo , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/genética , Carga Tumoral , Quinases raf/metabolismo , Proteínas ras/metabolismo
3.
J Proteome Res ; 17(10): 3574-3585, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30200768

RESUMO

Triple negative breast cancer is an aggressive, heterogeneous disease with high recurrence and metastasis rates even with modern chemotherapy regimens and thus is in need of new therapeutics. Here, three novel synthetic analogues of chalcones, plant-based molecules that have demonstrated potency against a wide variety of cancers, were investigated as potential therapeutics for triple negative breast cancer. These compounds exhibit IC50 values of ∼5 µM in triple negative breast cancer cell lines and are more potent against triple negative breast cancer cell lines than against nontumor breast cell lines according to viability experiments. Tandem mass tag-based quantitative proteomics followed by gene set enrichment analysis and validation experiments using flow cytometry, apoptosis, and Western blot assays revealed three different anticancer mechanisms for these compounds. First, the chalcone analogues induce the unfolded protein response followed by apoptosis. Second, increases in the abundances of MHC-I pathway proteins occurs, which would likely result in immune stimulation in an organism. And third, treatment with the chalcone analogues causes disruption of the cell cycle by interfering with microtubule structure and by inducing G1 phase arrest. These data demonstrate the potential of these novel chalcone derivatives as treatments for triple negative breast cancer, though further work evaluating their efficacy in vivo is needed.


Assuntos
Antineoplásicos/farmacologia , Chalcona/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Proteômica/métodos , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalcona/química , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
4.
Breast Cancer Res Treat ; 167(3): 797-802, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29116467

RESUMO

PURPOSE: 27-hydroxycholesterol (27HC), an endogenous selective estrogen receptor modulator (SERM), drives the growth of estrogen receptor-positive (ER+) breast cancer. 1,25-dihydroxyvitamin D (1,25(OH)2D), the active metabolite of vitamin D, is known to inhibit expression of CYP27B1, which is very similar in structure and function to CYP27A1, the synthesizing enzyme of 27HC. Therefore, we hypothesized that 1,25(OH)2D may also inhibit expression of CYP27A1, thereby reducing 27HC concentrations in the blood and tissues that express CYP27A1, including breast cancer tissue. METHODS: 27HC, 25-hydroxyvitamin D (25OHD), and 1,25(OH)2D were measured in sera from 29 breast cancer patients before and after supplementation with low-dose (400 IU/day) or high-dose (10,000 IU/day) vitamin D in the interval between biopsy and surgery. RESULTS: A significant increase (p = 4.3E-5) in 25OHD and a decrease (p = 1.7E-1) in 27HC was observed in high-dose versus low-dose vitamin D subjects. Excluding two statistical outliers, 25OHD and 27HC levels were inversely correlated (p = 7.0E-3). CONCLUSIONS: Vitamin D supplementation can decrease circulating 27HC of breast cancer patients, likely by CYP27A1 inhibition. This suggests a new and additional modality by which vitamin D can inhibit ER+ breast cancer growth, though a larger study is needed for verification.


Assuntos
Neoplasias da Mama/dietoterapia , Colestanotriol 26-Mono-Oxigenase/genética , Hidroxicolesteróis/sangue , Vitamina D/administração & dosagem , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Biópsia , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Linhagem Celular Tumoral , Colestanotriol 26-Mono-Oxigenase/antagonistas & inibidores , Suplementos Nutricionais , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores de Estrogênio/genética , Moduladores Seletivos de Receptor Estrogênico/administração & dosagem
5.
Biochemistry ; 55(24): 3461-8, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27224728

RESUMO

The encapsulation of enzymes and other proteins within a proteinaceous shell has been observed in many bacteria and archaea, but the function and utility of many such compartments are enigmatic. Efforts to study these functions have been complicated by the size and complexity of traditional protein compartments. One potential system for investigating the effect of compartmentalization is encapsulin, a large and newly discovered class of protein shells that are typically composed of two proteins: a protomer that assembles into the icosahedral shell and a cargo protein packaged inside. Encapsulins are some of the simplest known protein shell systems and readily self-assemble in vivo. Systematic characterization of the effects of compartmentalization requires the ability to load a wide range of cargo proteins. Here, we demonstrate that foreign cargo can be loaded into the encapsulin from Thermotoga maritima both in vivo and in vitro by fusion of the cargo protein with a short C-terminal peptide present in the native cargo. To facilitate biochemical characterization, we also develop a simple and rapid purification protocol and demonstrate the thermal and pH stability of the shell. Efforts to study the biophysical effects of protein encapsulation have been problematic in complex compartments, but the simplicity of assembling and loading encapsulin makes it an ideal system for future experiments exploring the effects of encapsulation on proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Fragmentos de Peptídeos/metabolismo , Peroxidases/metabolismo , Proteínas Recombinantes/metabolismo , Thermotoga maritima/metabolismo , Dicroísmo Circular , Técnicas In Vitro , Modelos Moleculares
6.
Anal Chem ; 87(7): 3973-80, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25719488

RESUMO

The effectiveness of the supercharging reagents m-nitrobenzyl alcohol (m-NBA) and propylene carbonate at producing highly charged protein ions in electrospray ionization is compared. Addition of 5% m-NBA or 15% propylene carbonate increases the average charge of three proteins by ∼21% or ∼23%, respectively, when these ions are formed from denaturing solutions (water/methanol/acetic acid). These results indicate that both reagents are nearly equally effective at supercharging when used at their optimum concentrations. A narrowing of the charge state distribution occurs with both reagents, although this effect is greater for propylene carbonate. Focusing the ion signal into fewer charge states has the advantage of improving sensitivity. The maximum charge state of ubiquitin formed with propylene carbonate is 21+, four charges higher than previously reported. Up to nearly 30% of all residues in a protein can be charged, and the collisional cross sections of the most highly charged ions of both ubiquitin and cytochrome c formed with these supercharging reagents were measured for the first time and found to be similar to those calculated for theoretical highly extended, linear or near-linear conformations. Under native supercharging conditions, m-NBA is significantly more effective at producing high charge states than propylene carbonate.


Assuntos
Álcoois Benzílicos/química , Anidrases Carbônicas/química , Citocromos c/química , Propano/análogos & derivados , Ubiquitina/química , Anidrases Carbônicas/metabolismo , Íons/química , Íons/metabolismo , Propano/química , Conformação Proteica , Solubilidade , Espectrometria de Massas em Tandem
7.
Analyst ; 140(21): 7184-94, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26421324

RESUMO

The effectiveness of two new supercharging reagents for producing highly charged ions by electrospray ionization (ESI) from aqueous solutions in which proteins have native structures and reactivities were investigated. In aqueous solution, 2-thiophenone and 4-hydroxymethyl-1,3-dioxolan-2-one (HD) at a concentration of 2% by volume can increase the average charge of cytochrome c and myoglobin by up to 163%, resulting in even higher charge states than those that are produced from water/methanol/acid solutions in which these proteins are denatured. The greatest extent of supercharging occurs in pure water, but these supercharging reagents are also highly effective in aqueous solutions containing 200 mM ammonium acetate buffer commonly used in native mass spectrometry (MS). These reagents are less effective supercharging reagents than m-nitrobenzyl alcohol (m-NBA) and propylene carbonate (PC) when ions are formed from water/methanol/acid. The extent to which loss of the heme group from myoglobin occurs is related to the extent of supercharging. Results from guanidine melts of cytochrome c monitored with tryptophan fluorescence show that the supercharging reagents PC, sulfolane and HD are effective chemical denaturants in solution. These results provide additional evidence for the role of protein structural changes in the electrospray droplet as the primary mechanism for supercharging with these reagents in native MS. These results also demonstrate that for at least some proteins, the formation of highly charged ions from native MS is no longer a significant barrier for obtaining structural information using conventional tandem MS methods.


Assuntos
Citocromos c/química , Indicadores e Reagentes/química , Mioglobina/química , Espectrometria de Massas por Ionização por Electrospray , Acetatos/química , Álcoois Benzílicos/química , Íons , Metanol/química , Propano/análogos & derivados , Propano/química , Conformação Proteica , Proteínas/química , Espectrofotometria , Espectrometria de Massas em Tandem , Termodinâmica , Tiofenos/química , Água/química
8.
Cell Rep Med ; 3(2): 100502, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35243415

RESUMO

Among men, prostate cancer is the second leading cause of cancer-associated mortality, with advanced disease remaining a major clinical challenge. We describe a small molecule, SU086, as a therapeutic strategy for advanced prostate cancer. We demonstrate that SU086 inhibits the growth of prostate cancer cells in vitro, cell-line and patient-derived xenografts in vivo, and ex vivo prostate cancer patient specimens. Furthermore, SU086 in combination with standard of care second-generation anti-androgen therapies displays increased impairment of prostate cancer cell and tumor growth in vitro and in vivo. Cellular thermal shift assay reveals that SU086 binds to heat shock protein 90 (HSP90) and leads to a decrease in HSP90 levels. Proteomic profiling demonstrates that SU086 binds to and decreases HSP90. Metabolomic profiling reveals that SU086 leads to perturbation of glycolysis. Our study identifies SU086 as a treatment for advanced prostate cancer as a single agent or when combined with second-generation anti-androgens.


Assuntos
Neoplasias da Próstata , Proteômica , Proliferação de Células , Glicólise , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico
9.
Cell Chem Biol ; 28(8): 1206-1220.e6, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-33713600

RESUMO

Y box binding protein 1 (YB-1) is a multifunctional protein associated with tumor progression and the emergence of treatment resistance (TR). Here, we report an azopodophyllotoxin small molecule, SU056, that potently inhibits tumor growth and progression via YB-1 inhibition. This YB-1 inhibitor inhibits cell proliferation, resistance to apoptosis in ovarian cancer (OC) cells, and arrests in the G1 phase. Inhibitor treatment leads to enrichment of proteins associated with apoptosis and RNA degradation pathways while downregulating spliceosome pathway. In vivo, SU056 independently restrains OC progression and exerts a synergistic effect with paclitaxel to further reduce disease progression with no observable liver toxicity. Moreover, in vitro mechanistic studies showed delayed disease progression via inhibition of drug efflux and multidrug resistance 1, and significantly lower neurotoxicity as compared with etoposide. These data suggest that YB-1 inhibition may be an effective strategy to reduce OC progression, antagonize TR, and decrease patient mortality.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Proteína 1 de Ligação a Y-Box/antagonistas & inibidores , Idoso , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Pessoa de Meia-Idade , Estrutura Molecular , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ratos , Proteína 1 de Ligação a Y-Box/análise , Proteína 1 de Ligação a Y-Box/metabolismo
10.
J Am Soc Mass Spectrom ; 27(6): 1019-27, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26919868

RESUMO

Electrothermal supercharging (ETS) with electrospray ionization produces highly charged protein ions from buffered aqueous solutions in which proteins have native folded structures. ETS increases the charge of ribonuclease A by 34%, whereas only a 6% increase in charge occurs for a reduced-alkylated form of this protein, which is unfolded and its structure is ~66% random coil in this solution. These results indicate that protein denaturation that occurs in the ESI droplets is the primary mechanism for ETS. ETS does not affect the extent of solution-phase hydrogen-deuterium exchange (HDX) that occurs for four proteins that have significantly different structures in solution, consistent with a droplet lifetime that is considerably shorter than observable rates of HDX. Rate constants for HDX of ubiquitin are obtained with a spatial resolution of ~1.3 residues with ETS and electron transfer dissociation of the 10+ charge-state using a single capillary containing a few µL of protein solution in which HDX continuously occurs. HDX protection at individual residues with ETS HDX is similar to that with reagent supercharging HDX and with solution-phase NMR, indicating that the high spray potentials required to induce ETS do not lead to HD scrambling. Graphical Abstract ᅟ.


Assuntos
Conformação Proteica , Espectrometria de Massas em Tandem , Medição da Troca de Deutério , Cinética , Proteínas , Espectrometria de Massas por Ionização por Electrospray
11.
Elife ; 52016 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-26949248

RESUMO

Activation triggers the exchange of subunits in Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Subunidades Proteicas/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Conformação Molecular , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa