Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Immunity ; 56(5): 998-1012.e8, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37116499

RESUMO

Cytosolic innate immune sensing is critical for protecting barrier tissues. NOD1 and NOD2 are cytosolic sensors of small peptidoglycan fragments (muropeptides) derived from the bacterial cell wall. These muropeptides enter cells, especially epithelial cells, through unclear mechanisms. We previously implicated SLC46 transporters in muropeptide transport in Drosophila immunity. Here, we focused on Slc46a2, which was highly expressed in mammalian epidermal keratinocytes, and showed that it was critical for the delivery of diaminopimelic acid (DAP)-muropeptides and activation of NOD1 in keratinocytes, whereas the related transporter Slc46a3 was critical for delivering the NOD2 ligand MDP to keratinocytes. In a mouse model, Slc46a2 and Nod1 deficiency strongly suppressed psoriatic inflammation, whereas methotrexate, a commonly used psoriasis therapeutic, inhibited Slc46a2-dependent transport of DAP-muropeptides. Collectively, these studies define SLC46A2 as a transporter of NOD1-activating muropeptides, with critical roles in the skin barrier, and identify this transporter as an important target for anti-inflammatory intervention.


Assuntos
Dermatite , Metotrexato , Camundongos , Animais , Metotrexato/farmacologia , Inflamação , Peptidoglicano/metabolismo , Células Epiteliais/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Imunidade Inata , Mamíferos
2.
Infect Immun ; 89(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33257531

RESUMO

Yersinia pestis is a highly virulent pathogen and the causative agent of bubonic, septicemic, and pneumonic plague. Primary pneumonic plague caused by inhalation of respiratory droplets contaminated with Y. pestis is nearly 100% lethal within 4 to 7 days without antibiotic intervention. Pneumonic plague progresses in two phases, beginning with extensive bacterial replication in the lung with minimal host responsiveness, followed by the abrupt onset of a lethal proinflammatory response. The precise mechanisms by which Y. pestis is able to colonize the lung and survive two very distinct disease phases remain largely unknown. To date, a few bacterial virulence factors, including the Ysc type 3 secretion system, are known to contribute to the pathogenesis of primary pneumonic plague. The bacterial GTPase BipA has been shown to regulate expression of virulence factors in a number of Gram-negative bacteria, including Pseudomonas aeruginosa, Escherichia coli, and Salmonella enterica serovar Typhi. However, the role of BipA in Y. pestis has yet to be investigated. Here, we show that BipA is a Y. pestis virulence factor that promotes defense against early neutrophil-mediated bacterial killing in the lung. This work identifies a novel Y. pestis virulence factor and highlights the importance of early bacterial/neutrophil interactions in the lung during primary pneumonic plague.


Assuntos
Proteínas de Bactérias/fisiologia , GTP Fosfo-Hidrolases/fisiologia , Peste/imunologia , Peste/fisiopatologia , Fatores de Virulência/fisiologia , Yersinia pestis/imunologia , Yersinia pestis/patogenicidade , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
3.
Nat Immunol ; 9(8): 908-16, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18604211

RESUMO

Autophagy, an evolutionally conserved homeostatic process for catabolizing cytoplasmic components, has been linked to the elimination of intracellular pathogens during mammalian innate immune responses. However, the mechanisms underlying cytoplasmic infection-induced autophagy and the function of autophagy in host survival after infection with intracellular pathogens remain unknown. Here we report that in drosophila, recognition of diaminopimelic acid-type peptidoglycan by the pattern-recognition receptor PGRP-LE was crucial for the induction of autophagy and that autophagy prevented the intracellular growth of Listeria monocytogenes and promoted host survival after this infection. Autophagy induction occurred independently of the Toll and IMD innate signaling pathways. Our findings define a pathway leading from the intracellular pattern-recognition receptors to the induction of autophagy to host defense.


Assuntos
Autofagia , Drosophila/imunologia , Drosophila/metabolismo , Imunidade Inata/imunologia , Listeria/imunologia , Peptidoglicano/metabolismo , Animais , Ácido Diaminopimélico , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Listeria/citologia , Peptidoglicano/imunologia , Receptores Toll-Like/imunologia
4.
Infect Immun ; 87(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30510103

RESUMO

Incidence of whooping cough (pertussis), a bacterial infection of the respiratory tract caused by the bacterium Bordetella pertussis, has reached levels not seen since the 1950s. Antibiotics fail to improve the course of disease unless administered early in infection. Therefore, there is an urgent need for the development of antipertussis therapeutics. Sphingosine-1-phosphate receptor (S1PR) agonists have been shown to reduce pulmonary inflammation during Bordetella pertussis infection in mouse models. However, the mechanisms by which S1PR agonists attenuate pertussis disease are unknown. We report the results of a transcriptome sequencing study examining pulmonary transcriptional responses in B. pertussis-infected mice treated with S1PR agonist AAL-R or vehicle control. This study identified peptidoglycan recognition protein 4 (PGLYRP4) as one of the most highly upregulated genes in the lungs of infected mice following S1PR agonism. PGLYRP4, a secreted, innate mediator of host defenses, was found to limit early inflammatory pathology in knockout mouse studies. Further, S1PR agonist AAL-R failed to attenuate pertussis disease in PGLYRP4 knockout (KO) mice. B. pertussis virulence factor tracheal cytotoxin (TCT), a secreted peptidoglycan breakdown product, induces host tissue damage. TCT-oversecreting strains were found to drive an early inflammatory response similar to that observed in PGLYRP4 KO mice. Further, TCT-oversecreting strains induced significantly greater pathology in PGLYRP4-deficient animals than their wild-type counterparts. Together, these data indicate that S1PR agonist-mediated protection against pertussis disease is PGLYRP4 dependent. Our data suggest PGLYRP4 functions, in part, by preventing TCT-induced airway damage.


Assuntos
Bordetella pertussis/imunologia , Proteínas de Transporte/metabolismo , Receptores de Lisoesfingolipídeo/agonistas , Coqueluche/imunologia , Animais , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
J Immunol ; 199(1): 263-270, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28539433

RESUMO

Tracheal cytotoxin (TCT), a monomer of DAP-type peptidoglycan from Bordetella pertussis, causes cytopathology in the respiratory epithelia of mammals and robustly triggers the Drosophila Imd pathway. PGRP-LE, a cytosolic innate immune sensor in Drosophila, directly recognizes TCT and triggers the Imd pathway, yet the mechanisms by which TCT accesses the cytosol are poorly understood. In this study, we report that CG8046, a Drosophila SLC46 family transporter, is a novel transporter facilitating cytosolic recognition of TCT, and plays a crucial role in protecting flies against systemic Escherichia coli infection. In addition, mammalian SLC46A2s promote TCT-triggered NOD1 activation in human epithelial cell lines, indicating that SLC46As is a conserved group of peptidoglycan transporter contributing to cytosolic immune recognition.


Assuntos
Citosol/imunologia , Proteínas de Drosophila/metabolismo , Imunidade Inata , Peptidoglicano/imunologia , Simportadores/metabolismo , Fatores de Virulência de Bordetella/imunologia , Animais , Linhagem Celular , Parede Celular/imunologia , Parede Celular/metabolismo , Citosol/metabolismo , Drosophila/imunologia , Drosophila/microbiologia , Escherichia coli/fisiologia , Células HEK293 , Humanos , Peptidoglicano/química , Peptidoglicano/metabolismo , Transdução de Sinais , Fatores de Virulência de Bordetella/química , Fatores de Virulência de Bordetella/metabolismo
6.
PLoS Genet ; 11(10): e1005493, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26439490

RESUMO

Three closely related thermally dimorphic pathogens are causal agents of major fungal diseases affecting humans in the Americas: blastomycosis, histoplasmosis and paracoccidioidomycosis. Here we report the genome sequence and analysis of four strains of the etiological agent of blastomycosis, Blastomyces, and two species of the related genus Emmonsia, typically pathogens of small mammals. Compared to related species, Blastomyces genomes are highly expanded, with long, often sharply demarcated tracts of low GC-content sequence. These GC-poor isochore-like regions are enriched for gypsy elements, are variable in total size between isolates, and are least expanded in the avirulent B. dermatitidis strain ER-3 as compared with the virulent B. gilchristii strain SLH14081. The lack of similar regions in related species suggests these isochore-like regions originated recently in the ancestor of the Blastomyces lineage. While gene content is highly conserved between Blastomyces and related fungi, we identified changes in copy number of genes potentially involved in host interaction, including proteases and characterized antigens. In addition, we studied gene expression changes of B. dermatitidis during the interaction of the infectious yeast form with macrophages and in a mouse model. Both experiments highlight a strong antioxidant defense response in Blastomyces, and upregulation of dioxygenases in vivo suggests that dioxide produced by antioxidants may be further utilized for amino acid metabolism. We identify a number of functional categories upregulated exclusively in vivo, such as secreted proteins, zinc acquisition proteins, and cysteine and tryptophan metabolism, which may include critical virulence factors missed before in in vitro studies. Across the dimorphic fungi, loss of certain zinc acquisition genes and differences in amino acid metabolism suggest unique adaptations of Blastomyces to its host environment. These results reveal the dynamics of genome evolution and of factors contributing to virulence in Blastomyces.


Assuntos
Blastomyces/genética , Chrysosporium/genética , Genoma Fúngico , Transcriptoma/genética , Animais , Blastomyces/patogenicidade , Blastomicose/genética , Blastomicose/microbiologia , Chrysosporium/patogenicidade , Histoplasmose/genética , Histoplasmose/microbiologia , Humanos , Macrófagos/microbiologia , Camundongos , Paracoccidioidomicose/genética , Paracoccidioidomicose/microbiologia
8.
PLoS Pathog ; 11(3): e1004688, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25781467

RESUMO

Pneumonic plague is the most rapid and lethal form of Yersinia pestis infection. Increasing evidence suggests that Y. pestis employs multiple levels of innate immune evasion and/or suppression to produce an early "pre-inflammatory" phase of pulmonary infection, after which the disease is highly inflammatory in the lung and 100% fatal. In this study, we show that IL-1ß/IL-18 cytokine activation occurs early after bacteria enter the lung, and this activation eventually contributes to pulmonary inflammation and pathology during the later stages of infection. However, the inflammatory effects of IL-1ß/IL-1-receptor ligation are not observed during this first stage of pneumonic plague. We show that Y. pestis also activates the induction of IL-1 receptor antagonist (IL-1RA), and this activation likely contributes to the ability of Y. pestis to establish the initial pre-inflammatory phase of disease.


Assuntos
Interleucina-1beta/metabolismo , Peste/imunologia , Pneumonia/microbiologia , Receptores de Interleucina-1/imunologia , Receptores de Interleucina-1/metabolismo , Yersinia pestis/imunologia , Animais , Humanos , Camundongos , Pneumonia/patologia , Receptores de Interleucina-1/antagonistas & inibidores
9.
Cell Microbiol ; 18(11): 1642-1652, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27062511

RESUMO

Recent research has shown that the microbiota affects the biology of associated host epithelial tissues, including their circadian rhythms, although few data are available on how such influences shape the microarchitecture of the brush border. The squid-vibrio system exhibits two modifications of the brush border that supports the symbionts: effacement and repolarization. Together these occur on a daily rhythm in adult animals, at the dawn expulsion of symbionts into the environment, and symbiont colonization of the juvenile host induces an increase in microvillar density. Here we sought to define how these processes are related and the roles of both symbiont colonization and environmental cues. Ultrastructural analyses showed that the juvenile-organ brush borders also efface concomitantly with daily dawn-cued expulsion of symbionts. Manipulation of the environmental light cue and juvenile symbiotic state demonstrated that this behaviour requires the light cue, but not colonization. In contrast, symbionts were required for the observed increase in microvillar density that accompanies post dawn brush-border repolarization; this increase was induced solely by host exposure to phosphorylated lipid A of symbiont cells. These data demonstrate that a partnering of environmental and symbiont cues shapes the brush border and that microbe-associated molecular patterns play a role in the regulation of brush-border microarchitecture.


Assuntos
Decapodiformes/fisiologia , Microvilosidades/microbiologia , Vibrio/fisiologia , Animais , Ritmo Circadiano , Decapodiformes/citologia , Decapodiformes/microbiologia , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Luz , Microvilosidades/ultraestrutura , Órgãos dos Sentidos/citologia , Órgãos dos Sentidos/microbiologia , Simbiose/efeitos da radiação
10.
PLoS Pathog ; 9(10): e1003679, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098126

RESUMO

Inhalation of Yersinia pestis causes primary pneumonic plague, a highly lethal syndrome with mortality rates approaching 100%. Pneumonic plague progression is biphasic, with an initial pre-inflammatory phase facilitating bacterial growth in the absence of host inflammation, followed by a pro-inflammatory phase marked by extensive neutrophil influx, an inflammatory cytokine storm, and severe tissue destruction. Using a FRET-based probe to quantitate injection of effector proteins by the Y. pestis type III secretion system, we show that these bacteria target alveolar macrophages early during infection of mice, followed by a switch in host cell preference to neutrophils. We also demonstrate that neutrophil influx is unable to limit bacterial growth in the lung and is ultimately responsible for the severe inflammation during the lethal pro-inflammatory phase.


Assuntos
Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Peste/imunologia , Pneumonia Bacteriana/imunologia , Yersinia pestis/imunologia , Animais , Feminino , Inflamação/imunologia , Inflamação/patologia , Camundongos , Neutrófilos/patologia , Peste/patologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia
11.
Proc Natl Acad Sci U S A ; 109(8): 3083-8, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22308352

RESUMO

Disease progression of primary pneumonic plague is biphasic, consisting of a preinflammatory and a proinflammatory phase. During the long preinflammatory phase, bacteria replicate to high levels, seemingly uninhibited by normal pulmonary defenses. In a coinfection model of pneumonic plague, it appears that Yersinia pestis quickly creates a localized, dominant anti-inflammatory state that allows for the survival and rapid growth of both itself and normally avirulent organisms. Yersinia pseudotuberculosis, the relatively recent progenitor of Y. pestis, shows no similar trans-complementation effect, which is unprecedented among other respiratory pathogens. We demonstrate that the effectors secreted by the Ysc type III secretion system are necessary but not sufficient to mediate this apparent immunosuppression. Even an unbiased negative selection screen using a vast pool of Y. pestis mutants revealed no selection against any known virulence genes, demonstrating the transformation of the lung from a highly restrictive to a generally permissive environment during the preinflammatory phase of pneumonic plague.


Assuntos
Infecções Respiratórias/microbiologia , Yersinia pestis/crescimento & desenvolvimento , Yersinia pestis/fisiologia , Animais , Teste de Complementação Genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Peste/microbiologia , Tela Subcutânea/microbiologia , Fatores de Tempo , Virulência/genética , Yersinia pestis/citologia , Yersinia pestis/patogenicidade
12.
Environ Microbiol ; 16(12): 3669-82, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24802887

RESUMO

Most bacterial species make transitions between habitats, such as switching from free living to symbiotic niches. We provide evidence that a galaxin protein, EsGal1, of the squid Euprymna scolopes participates in both: (i) selection of the specific partner Vibrio fischeri from the bacterioplankton during symbiosis onset and, (ii) modulation of V. fischeri growth in symbiotic maintenance. We identified two galaxins in transcriptomic databases and showed by quantitative reverse-transcriptase polymerase chain reaction that one (esgal1) was dominant in the light organ. Further, esgal1 expression was upregulated by symbiosis, a response that was partially achieved with exposure to symbiont cell-envelope molecules. Confocal immunocytochemistry of juvenile animals localized EsGal1 to the apical surfaces of light-organ epithelia and surrounding mucus, the environment in which V. fischeri cells aggregate before migration into the organ. Growth assays revealed that one repeat of EsGal1 arrested growth of Gram-positive bacterial cells, which represent the cell type first 'winnowed' during initial selection of the symbiont. The EsGal1-derived peptide also significantly decreased the growth rate of V. fischeri in culture. Further, when animals were exposed to an anti-EsGal1 antibody, symbiont population growth was significantly increased. These data provide a window into how hosts select symbionts from a rich environment and govern their growth in symbiosis.


Assuntos
Aliivibrio fischeri/fisiologia , Decapodiformes/metabolismo , Decapodiformes/microbiologia , Proteínas/metabolismo , Simbiose , Aliivibrio fischeri/efeitos dos fármacos , Aliivibrio fischeri/crescimento & desenvolvimento , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Decapodiformes/genética , Epitélio/química , Muco/química , Peptídeos/farmacologia , Proteínas/análise , Proteínas/química , Proteínas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma
13.
Microbiol Mol Biol Rev ; 88(2): e0007623, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38819148

RESUMO

SUMMARYHistoplasmosis is arguably the most common fungal respiratory infection worldwide, with hundreds of thousands of new infections occurring annually in the United States alone. The infection can progress in the lung or disseminate to visceral organs and can be difficult to treat with antifungal drugs. Histoplasma, the causative agent of the disease, is a pathogenic fungus that causes life-threatening lung infections and is globally distributed. The fungus has the ability to germinate from conidia into either hyphal (mold) or yeast form, depending on the environmental temperature. This transition also regulates virulence. Histoplasma and histoplasmosis have been classified as being of emergent importance, and in 2022, the World Health Organization included Histoplasma as 1 of the 19 most concerning human fungal pathogens. In this review, we synthesize the current understanding of the ecological niche, evolutionary history, and virulence strategies of Histoplasma. We also describe general patterns of the symptomatology and epidemiology of histoplasmosis. We underscore areas where research is sorely needed and highlight research avenues that have been productive.


Assuntos
Variação Genética , Histoplasma , Histoplasmose , Histoplasma/genética , Histoplasma/patogenicidade , Histoplasmose/microbiologia , Humanos , Virulência/genética , Animais , Genótipo
14.
bioRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260643

RESUMO

Histoplasmosis is an endemic mycosis that often presents as a respiratory infection in immunocompromised patients. Hundreds of thousands of new infections are reported annually around the world. The etiological agent of the disease, Histoplasma, is a dimorphic fungus commonly found in the soil where it grows as mycelia. Humans can become infected by Histoplasma through inhalation of its spores (conidia) or mycelial particles. The fungi transitions into the yeast phase in the lungs at 37°C. Once in the lungs, yeast cells reside and proliferate inside alveolar macrophages. We have previously described that Histoplasma is composed of at least five cryptic species that differ genetically, and assigned new names to the lineages. Here we evaluated multiple phenotypic characteristics of 12 strains from five phylogenetic species of Histoplasma to identify phenotypic traits that differentiate between these species: H. capsulatum sensu stricto, H. ohiense, H. mississippiense, H. suramericanum, and an African lineage. We report diagnostic traits for two species. The other three species can be identified by a combination of traits. Our results suggest that 1) there are significant phenotypic differences among the cryptic species of Histoplasma, and 2) that those differences can be used to positively distinguish those species in a clinical setting and for further study of the evolution of this fungal pathogen.

15.
mSphere ; 9(6): e0000924, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38771035

RESUMO

Histoplasmosis is an endemic mycosis that often presents as a respiratory infection in immunocompromised patients. Hundreds of thousands of new infections are reported annually around the world. The etiological agent of the disease, Histoplasma, is a dimorphic fungus commonly found in the soil where it grows as mycelia. Humans can become infected by Histoplasma through inhalation of its spores (conidia) or mycelial particles. The fungi transition into the yeast phase in the lungs at 37°C. Once in the lungs, yeast cells reside and proliferate inside alveolar macrophages. Genomic work has revealed that Histoplasma is composed of at least five cryptic phylogenetic species that differ genetically. Three of those lineages have received new names. Here, we evaluated multiple phenotypic characteristics (colony morphology, secreted proteolytic activity, yeast size, and growth rate) of strains from five of the phylogenetic species of Histoplasma to identify phenotypic traits that differentiate between these species: Histoplasma capsulatum sensu stricto, Histoplasma ohiense, Histoplasma mississippiense, Histoplasma suramericanum, and an African lineage. We report diagnostic traits for three species. The other two species can be identified by a combination of traits. Our results suggest that (i) there are significant phenotypic differences among the cryptic species of Histoplasma and (ii) those differences can be used to positively distinguish those species in a clinical setting and for further study of the evolution of this fungal pathogen.IMPORTANCEIdentifying species boundaries is a critical component of evolutionary biology. Genome sequencing and the use of molecular markers have advanced our understanding of the evolutionary history of fungal pathogens, including Histoplasma, and have allowed for the identification of new species. This is especially important in organisms where morphological characteristics have not been detected. In this study, we revised the taxonomic status of the four named species of the genus Histoplasma, H. capsulatum sensu stricto (ss), H. ohiense, H. mississippiense, and H. suramericanum, and propose the use of species-specific phenotypic traits to aid their identification when genome sequencing is not available. These results have implications not only for evolutionary study of Histoplasma but also for clinicians, as the Histoplasma species could determine the outcome of disease and treatment needed.


Assuntos
Histoplasma , Histoplasmose , Fenótipo , Filogenia , Histoplasma/genética , Histoplasma/classificação , Histoplasma/patogenicidade , Histoplasma/isolamento & purificação , Histoplasmose/microbiologia , Humanos , Genoma Fúngico
16.
Proc Natl Acad Sci U S A ; 107(17): 7722-7, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20382864

RESUMO

RegIII proteins are secreted C-type lectins that kill Gram-positive bacteria and play a vital role in antimicrobial protection of the mammalian gut. RegIII proteins bind their bacterial targets via interactions with cell wall peptidoglycan but lack the canonical sequences that support calcium-dependent carbohydrate binding in other C-type lectins. Here, we use NMR spectroscopy to determine the molecular basis for peptidoglycan recognition by HIP/PAP, a human RegIII lectin. We show that HIP/PAP recognizes the peptidoglycan carbohydrate backbone in a calcium-independent manner via a conserved "EPN" motif that is critical for bacterial killing. While EPN sequences govern calcium-dependent carbohydrate recognition in other C-type lectins, the unusual location and calcium-independent functionality of the HIP/PAP EPN motif suggest that this sequence is a versatile functional module that can support both calcium-dependent and calcium-independent carbohydrate binding. Further, we show HIP/PAP binding affinity for carbohydrate ligands depends on carbohydrate chain length, supporting a binding model in which HIP/PAP molecules "bind and jump" along the extended polysaccharide chains of peptidoglycan, reducing dissociation rates and increasing binding affinity. We propose that dynamic recognition of highly clustered carbohydrate epitopes in native peptidoglycan is an essential mechanism governing high-affinity interactions between HIP/PAP and the bacterial cell wall.


Assuntos
Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Parede Celular/química , Mucosa Intestinal/metabolismo , Lectinas Tipo C/metabolismo , Listeria monocytogenes/química , Modelos Moleculares , Peptidoglicano/metabolismo , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/fisiologia , Antígenos de Neoplasias/química , Biomarcadores Tumorais/química , Parede Celular/metabolismo , Humanos , Mucosa Intestinal/microbiologia , Lectinas Tipo C/química , Listeria monocytogenes/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Químicos , Dados de Sequência Molecular , Proteínas Associadas a Pancreatite , Peptidoglicano/química
17.
Mol Microbiol ; 79(2): 533-51, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21219468

RESUMO

Cyclic di-GMP (c-di-GMP) is a signalling molecule that governs the transition between planktonic and biofilm states. Previously, we showed that the diguanylate cyclase HmsT and the putative c-di-GMP phosphodiesterase HmsP inversely regulate biofilm formation through control of HmsHFRS-dependent poly-ß-1,6-N-acetylglucosamine synthesis. Here, we systematically examine the functionality of the genes encoding putative c-di-GMP metabolic enzymes in Yersinia pestis. We determine that, in addition to hmsT and hmsP, only the gene y3730 encodes a functional enzyme capable of synthesizing c-di-GMP. The seven remaining genes are pseudogenes or encode proteins that do not function catalytically or are not expressed. Furthermore, we show that HmsP has c-di-GMP-specific phosphodiesterase activity. We report that a mutant incapable of c-di-GMP synthesis is unaffected in virulence in plague mouse models. Conversely, an hmsP mutant, unable to degrade c-di-GMP, is defective in virulence by a subcutaneous route of infection due to poly-ß-1,6-N-acetylglucosamine overproduction. This suggests that c-di-GMP signalling is not only dispensable but deleterious for Y. pestis virulence. Our results show that a key event in the evolution of Y. pestis from the ancestral Yersinia pseudotuberculosis was a significant reduction in the complexity of its c-di-GMP signalling network likely resulting from the different disease cycles of these human pathogens.


Assuntos
3',5'-GMP Cíclico Fosfodiesterases/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Transdução de Sinais , Fatores de Virulência/metabolismo , Yersinia pestis/patogenicidade , Animais , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Peste/microbiologia , Peste/patologia , Virulência , Yersinia pestis/enzimologia , Yersinia pestis/metabolismo
19.
mBio ; 13(1): e0257421, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089059

RESUMO

Histoplasma capsulatum, a dimorphic fungal pathogen, is the most common cause of fungal respiratory infections in immunocompetent hosts. Histoplasma is endemic in the Ohio and Mississippi River Valleys in the United States and is also distributed worldwide. Previous studies have revealed at least eight clades, each specific to a geographic location: North American classes 1 and 2 (NAm 1 and NAm 2), Latin American groups A and B (LAm A and LAm B), Eurasian, Netherlands, Australian and African, and an additional distinct lineage (H81) comprised of Panamanian isolates. Previously assembled Histoplasma genomes are highly fragmented, with the highly repetitive G217B (NAm 2) strain, which has been used for most whole-genome-scale transcriptome studies, assembled into over 250 contigs. In this study, we set out to fully assemble the repeat regions and characterize the large-scale genome architecture of Histoplasma species. We resequenced five Histoplasma strains (WU24 [NAm 1], G217B [NAm 2], H88 [African], G186AR [Panama], and G184AR [Panama]) using Oxford Nanopore Technologies long-read sequencing technology. Here, we report chromosomal-level assemblies for all five strains, which exhibit extensive synteny among the geographically distant Histoplasma isolates. The new assemblies revealed that RYP2, a major regulator of morphology and virulence, is duplicated in G186AR. In addition, we mapped previously generated transcriptome data sets onto the newly assembled chromosomes. Our analyses revealed that the expression of transposons and transposon-embedded genes are upregulated in yeast phase compared to mycelial phase in the G217B and H88 strains. This study provides an important resource for fungal researchers and further highlights the importance of chromosomal-level assemblies in analyzing high-throughput data sets. IMPORTANCE Histoplasma species are dimorphic fungi causing significant morbidity and mortality worldwide. These fungi grow as mold in the soil and as budding yeast within the human host. Histoplasma can be isolated from soil in diverse regions, including North America, South America, Africa, and Europe. Phylogenetically distinct species of Histoplasma have been isolated and sequenced. However, for the commonly used strains, genome assemblies have been fragmented, leading to underutilization of genome-scale data. This study provides chromosome-level assemblies of the commonly used Histoplasma strains using long-read sequencing technology. Comparative analysis of these genomes shows largely conserved gene order within the chromosomes. Mapping existing transcriptome data on these new assemblies reveals clustering of transcriptionally coregulated genes. The results of this study highlight the importance of obtaining chromosome-level assemblies in understanding the biology of human fungal pathogens.


Assuntos
Histoplasma , Micoses , Humanos , Sintenia , Austrália , Histoplasma/genética , Saccharomyces cerevisiae/genética , Cromossomos , Genoma Fúngico
20.
Infect Immun ; 79(2): 644-52, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21115720

RESUMO

Yersinia pestis is a highly pathogenic Gram-negative organism and the causative agent of bubonic and pneumonic plague. Y. pestis is capable of causing major epidemics; thus, there is a need for vaccine targets and a greater understanding of the role of these targets in pathogenesis. Two prime Y. pestis vaccine candidates are the usher-chaperone fimbriae Psa and Caf. Herein we report that Y. pestis requires, in a nonredundant manner, both PsaA and Caf1 to achieve its full pathogenic ability in both pneumonic and bubonic plague in C57BL/6J mice. Deletion of psaA leads to a decrease in the organ bacterial burden and to a significant increase in the 50% lethal dose (LD50) after subcutaneous infection. Deletion of caf1 also leads to a significant decrease in the organ bacterial burden but more importantly leads to a significantly greater increase in the LD50 than was observed for the ΔpsaA mutant strain after subcutaneous infection of C57BL/6J mice. Furthermore, the degree of attenuation of the Δcaf1 mutant strain is mouse background dependent, as the Δcaf1 mutant strain was attenuated to a lesser degree in BALB/cJ mice by the subcutaneous route than in C57BL/6J mice. This observation that the degree of requirement for Caf1 is dependent on the mouse background indicates that the virulence of Y. pestis is dependent on the genetic makeup of its host and provides further support for the hypothesis that PsaA and Caf1 have different targets.


Assuntos
Cápsulas Bacterianas/fisiologia , Peste/microbiologia , Yersinia pestis/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica/fisiologia , Pulmão/microbiologia , Linfonodos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Peste/genética , Peste/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa