Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Genet ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411942

RESUMO

WRKY Transcription factors (TFs) play critical roles in plant defence mechanisms that are activated in response to biotic and abiotic stresses. However, information on the Glycine soja WRKYs (GsoWRKYs) is scarce. Owing to its importance in soybean breeding, here we identified putative WRKY TFs in wild soybean, and compared the results with Glycine max WRKYs (GmaWRKYs) by phylogenetic, conserved motif, and duplication analyses. Moreover, we explored the expression trends of WRKYs in G. max (oomycete, fungi, virus, bacteria, and soybean cyst nematode) and G. soja (soybean cyst nematode), and identified commonly expressed WRKYs and their co-expressed genes. We identified, 181 and 180 putative WRKYs in G. max and G. soja, respectively. Though the number of WRKYs in both studied species is almost the same, they differ in many ways, i.e., the number of WRKYs on corresponding chromosomes, conserved domain structures, WRKYGQK motif variants, and zinc-finger motifs. WRKYs in both species grouped in three major clads, i.e., I-III, where group-II had sub-clads IIa-IIe. We found that GsoWRKYs expanded mostly through segmental duplication. A large number of WRKYs were expressed in response to biotic stresses, i.e., Phakospora pachyrhizi, Phytoplasma, Heterodera glycines, Macrophomina phaseolina, and Soybean mosaic virus; 56 GmaWRKYs were commonly expressed in soybean plants infected with these diseases. Finally, 30 and 63 GmaWRKYs and GsoWRKYs co-expressed with 205 and 123 non-WRKY genes, respectively, indicating that WRKYs play essential roles in biotic stress tolerance in Glycine species.

2.
Environ Res ; 229: 115442, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758916

RESUMO

Pesticides are a heterogeneous class of chemicals mainly used for the protection of crops from pests. Because of their very widespread use, acute or/and chronic exposure to these chemicals can lead to a plethora of sequelae inflicting diseases, many of which involve the nervous system. Tremor has been associated with pesticide exposure in human and animal studies. This review is aimed at assessing the studies currently available on the association between the various types of pesticides/insecticides and tremor, while also accounting for potential confounding factors. To our knowledge, this is the first coherent review on the subject. After appraising the available evidence, we call for more intensive research on this topic, as well as intonate the need of implementing future preventive measures to protect the exposed populations and to reduce potential disabilities and social drawbacks.


Assuntos
Inseticidas , Praguicidas , Animais , Humanos , Praguicidas/toxicidade , Tremor/induzido quimicamente , Produtos Agrícolas
3.
Arch Toxicol ; 97(5): 1299-1318, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933023

RESUMO

Hypoxia-inducible factor 1 (HIF-1) is an oxygen-sensing transcriptional regulator orchestrating a complex of adaptive cellular responses to hypoxia. Several studies have demonstrated that toxic metal exposure may also modulate HIF-1α signal transduction pathway, although the existing data are scarce. Therefore, the present review aims to summarize the existing data on the effects of toxic metals on HIF-1 signaling and the potential underlying mechanisms with a special focus on prooxidant effect of the metals. The particular effect of metals was shown to be dependent on cell type, varying from down- to up-regulation of HIF-1 pathway. Inhibition of HIF-1 signaling may contribute to impaired hypoxic tolerance and adaptation, thus promoting hypoxic damage in the cells. In contrast, its metal-induced activation may result in increased tolerance to hypoxia through increased angiogenesis, thus promoting tumor growth and contributing to carcinogenic effect of heavy metals. Up-regulation of HIF-1 signaling is mainly observed upon Cr, As, and Ni exposure, whereas Cd and Hg may both stimulate and inhibit HIF-1 pathway. The mechanisms underlying the influence of toxic metal exposure on HIF-1 signaling involve modulation of prolyl hydroxylases (PHD2) activity, as well as interference with other tightly related pathways including Nrf2, PI3K/Akt, NF-κB, and MAPK signaling. These effects are at least partially mediated by metal-induced ROS generation. Hypothetically, maintenance of adequate HIF-1 signaling upon toxic metal exposure through direct (PHD2 modulation) or indirect (antioxidant) mechanisms may provide an additional strategy for prevention of adverse effects of metal toxicity.


Assuntos
Metais Pesados , Fosfatidilinositol 3-Quinases , Humanos , Transdução de Sinais , Hipóxia , Metais Pesados/toxicidade , Fator 1 Induzível por Hipóxia/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia/farmacologia
4.
Arch Toxicol ; 97(5): 1285-1298, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36892595

RESUMO

The current approach for the risk assessment of chemicals does not account for the complex human real-life exposure scenarios. Exposure to chemical mixtures in everyday life has raised scientific, regulatory, and societal concerns in recent years. Several studies aiming to identify the safety limits of chemical mixtures determined hazardous levels lower than those of separate chemicals. Following these observations, this study built on the standards set by the real-life risk simulation (RLRS) scenario and investigated the effect of long-term exposure (18 months) to a mixture of 13 chemicals (methomyl, triadimefon, dimethoate, glyphosate, carbaryl, methyl parathion, aspartame, sodium benzoate, EDTA, ethylparaben, butylparaben, bisphenol A and acacia gum) in adult rats. Animals were divided into four dosing groups [0xNOAEL (control), 0.0025xNOAEL (low dose-LD), 0.01xNOAEL (medium dose-MD) and 0.05xNOAEL (high dose-HD) (mg/kg BW/day)]. After 18 months of exposure, all animals were sacrificed, and their organs were harvested, weighed, and pathologically examined. While organ weight tended to be higher in males than in females, when sex and dose were taken into account, lungs and hearts from female rats had significantly greater weight than that of males. This discrepancy was more obvious in the LD group. Histopathology showed that long-term exposure to the chemical mixture selected for this study caused dose-dependent changes in all examined organs. The main organs that contribute to chemical biotransformation and clearance (liver, kidneys, and lungs) consistently presented histopathological changes following exposure to the chemical mixture. In conclusion, exposure to very low doses (below the NOAEL) of the tested mixture for 18 months induced histopathological lesions and cytotoxic effects in a dose and tissue-dependent manner.


Assuntos
Praguicidas , Masculino , Humanos , Ratos , Feminino , Animais , Nível de Efeito Adverso não Observado , Ratos Sprague-Dawley , Praguicidas/toxicidade , Aditivos Alimentares/toxicidade , Tamanho do Órgão
5.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895164

RESUMO

Sambucus nigra (SN) berry extract is characterized by high antioxidant and anti-inflammatory activity. The current study aimed to investigate the effect of SN berry extract against indomethacin (IND)-induced gastric ulcer in rats and the mechanism involved. SN berry extract alleviated IND-induced gastric ulcers, as shown by assessing pathological manifestations in the gastric mucosa. These protective effects are attributed to attenuated oxidative damage to the gastric mucosa, correlated to increased activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), enhanced glutathione (GSH) levels, total antioxidant capacity (TAC), and upregulation of the Nrf2/HO-1 cascade. Moreover, oxidative stress markers, including malondialdehyde (MDA) and total oxidant status (TOS), were downregulated in SN-extract-treated animals. Furthermore, SN berry extract suppressed gastric mucosal inflammation by downregulating interleukin (IL)-33, IL-1ß, IL-6, and tumor necrosis factor-alpha (TNF-α) levels, and attenuating myeloperoxidase (MPO) activity. The protective effects of SN berry extract were similar to those exerted by esomeprazole (ESO), an acid-secretion-suppressive drug. In conclusion, SN berry extract has antiulcerative effects, alleviating oxidative stress and inflammation.


Assuntos
Sambucus nigra , Úlcera Gástrica , Animais , Ratos , Antioxidantes/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Frutas/metabolismo , Glutationa/metabolismo , Indometacina/efeitos adversos , Indometacina/toxicidade , Inflamação , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Superóxido Dismutase/metabolismo
6.
Molecules ; 28(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298879

RESUMO

Dracocephalum jacutense Peschkova is a rare and endangered species of the genus Dracocephalum of the Lamiaceae family. The species was first described in 1997 and listed in the Red Data Book of Yakutia. Significant differences in the multicomponent composition of extracts from D. jacutense collected in the natural environment and successfully introduced in the Botanical Garden of Yakutsk were identified by a team of authors earlier in a large study. In this work, we studied the chemical composition of the leaves, stem, and inflorescences of D. jacutense using the tandem mass spectrometry method. Only three cenopopulations of D. jacutense were found by us in the territory of the early habitat-in the vicinity of the village of Sangar, Kobyaysky district of Yakutia. The aboveground phytomass of the plant was collected, processed and dried as separate parts of the plant: inflorescences, stem and leaves. Firstly, a total of 128 compounds, 70% of which are polyphenols, were tentatively identified in extracts of D. jacutense. These polyphenol compounds were classified as 32 flavones, 12 flavonols, 6 flavan-3-ols, 7 flavanones, 17 phenolic acids, 2 lignans, 1 dihydrochalcone, 4 coumarins, and 8 anthocyanidins. Other chemical groups were presented as carotenoids, omega-3-fatty acids, omega-5-fatty acids, amino acids, purines, alkaloids, and sterols. The inflorescences are the richest in polyphenols (73 polyphenolic compounds were identified), while 33 and 22 polyphenols were found in the leaves and stems, respectively. A high level of identity for polyphenolic compounds in different parts of the plant is noted for flavanones (80%), followed by flavonols (25%), phenolic acids (15%), and flavones (13%). Furthermore, 78 compounds were identified for the first time in representatives of the genus Dracocephalum, including 50 polyphenolic compounds and 28 compounds of other chemical groups. The obtained results testify to the unique composition of polyphenolic compounds in different parts of D. jacutense.


Assuntos
Flavanonas , Flavonas , Lamiaceae , Cromatografia Líquida de Alta Pressão/métodos , Polifenóis/química , Flavonas/análise , Extratos Vegetais/química , Flavonóis/análise , Espectrometria de Massas em Tandem , Flavanonas/análise , Lamiaceae/química
7.
Molecules ; 27(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36500322

RESUMO

In this research, we present a detailed comparative analysis of the bioactive substances of soybean varieties k-11538 (Russia), k-11559 (Russia), k-569 (China), k-5367 (China), k-5373 (China), k-5586 (Sweden), and Primorskaya-86 (Russia) using an LSM 800 confocal laser microscope and an amaZon ion trap SL mass spectrometer. Laser microscopy made it possible to clarify in detail the spatial arrangement of the polyphenolic content of soybeans. Our results revealed that the phenolics of soybean are spatially located mainly in the seed coat and the outer layer of the cotyledon. High-performance liquid chromatography (HPLC) was used in combination with an amaZon SL BRUKER DALTONIKS ion trap (tandem mass spectrometry) to identify target analytes in soybean extracts. The results of initial studies revealed the presence of 63 compounds, and 45 of the target analytes were identified as polyphenolic compounds.


Assuntos
Glycine max , Fenóis , Glycine max/química , Fenóis/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/química , Microscopia Confocal , Lasers
8.
Molecules ; 26(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34577050

RESUMO

The colored grain of wheat (Triticum aestivum L.) contains a large number of polyphenolic compounds that are biologically active ingredients. The purpose of this work was a comparative metabolomic study of extracts from anthocyaninless (control), blue, and deep purple (referred to here as black) grains of seven genetically related wheat lines developed for the grain anthocyanin pigmentation trait. To identify target analytes in ethanol extracts, high-performance liquid chromatography was used in combination with Bruker Daltonics ion trap mass spectrometry. The results showed the presence of 125 biologically active compounds of a phenolic (85) and nonphenolic (40) nature in the grains of T. aestivum (seven lines). Among them, a number of phenolic compounds affiliated with anthocyanins, coumarins, dihydrochalcones, flavan-3-ols, flavanone, flavones, flavonols, hydroxybenzoic acids, hydroxycinnamic acids, isoflavone, lignans, other phenolic acids, stilbenes, and nonphenolic compounds affiliated with alkaloids, carboxylic acids, carotenoids, diterpenoids, essential amino acids, triterpenoids, sterols, nonessential amino acids, phytohormones, purines, and thromboxane receptor antagonists were found in T. aestivum grains for the first time. A comparative analysis of the diversity of the compounds revealed that the lines do not differ from each other in the proportion of phenolic (53.3% to 70.3% of the total number of identified compounds) and nonphenolic compounds (46.7% to 29.7%), but diversity of the compounds was significantly lower in grains of the control line. Even though the lines are genetically closely related and possess similar chemical profiles, some line-specific individual compounds were identified that constitute unique chemical fingerprints and allow to distinguish each line from the six others. Finally, the influence of the genotype on the chemical profiles of the wheat grains is discussed.


Assuntos
Cromatografia Líquida , Espectrometria de Massas em Tandem , Terpenos , Triticum
9.
Environ Res ; 179(Pt A): 108785, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31606615

RESUMO

Air pollution caused by vehicle emissions remains a serious environmental threat in urban areas. Sedimentation of atmospheric aerosols, surface wash, drainage water, and urbane wastewater can bring vehicle particle emissions into the aquatic environment. However, the level of toxicity and mode of toxic action for this kind of particles are not fully understood. Here we explored the aquatic toxic effects of particulate matter emitted from different types of vehicles on marine microalgae Porphyridium purpureum and Heterosigma akashiwo. We used flow cytometry to evaluate growth rate inhibition, changes in the level of esterase activity, changes in membrane potential and size changes of microalgae cells under the influence of particulate matter emitted by motorcycles, cars and specialized vehicles with different types of engines and powered by different types of fuel. Both microalgae species were highly influenced by the particles emitted by diesel-powered vehicles. These particle samples had the highest impact on survival, esterase activity, and membrane potential of microalgae and caused the most significant increase in microalgae cell size compared to the particles produced by gasoline-powered vehicles. The results of the algae-bioassay strongly correlate with the data of laser granulometry analyses, which indicate that the most toxic samples had a significantly higher percentage of particles in the size range less than 1 µm. Visual observation with an optical microscope showed intensive agglomeration of the particles emitted by diesel-powered vehicles with microalgae cells. Moreover, within the scope of this research, we did not observe the direct influence of metal content in the particles to the level of their aquatic toxicity, and we can conclude that physical damage is the most probable mechanism of toxicity for vehicle emitted particles.


Assuntos
Poluentes Atmosféricos/toxicidade , Microalgas/efeitos dos fármacos , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Monitoramento Ambiental , Gasolina , Veículos Automotores , Tamanho da Partícula
10.
Environ Res ; 156: 818-833, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28347490

RESUMO

Powerful scientific techniques have caused dramatic expansion of genetically modified crops leading to altered agricultural practices posing direct and indirect environmental implications. Despite the enhanced yield potential, risks and biosafety concerns associated with such GM crops are the fundamental issues to be addressed. An increasing interest can be noted among the researchers and policy makers in exploring unintended effects of transgenes associated with gene flow, flow of naked DNA, weediness and chemical toxicity. The current state of knowledge reveals that GM crops impart damaging impacts on the environment such as modification in crop pervasiveness or invasiveness, the emergence of herbicide and insecticide tolerance, transgene stacking and disturbed biodiversity, but these impacts require a more in-depth view and critical research so as to unveil further facts. Most of the reviewed scientific resources provide similar conclusions and currently there is an insufficient amount of data available and up until today, the consumption of GM plant products are safe for consumption to a greater extent with few exceptions. This paper updates the undesirable impacts of GM crops and their products on target and non-target species and attempts to shed light on the emerging challenges and threats associated with it. Underpinning research also realizes the influence of GM crops on a disturbance in biodiversity, development of resistance and evolution slightly resembles with the effects of non-GM cultivation. Future prospects are also discussed.


Assuntos
Meio Ambiente , Plantas Geneticamente Modificadas , Regulamentação Governamental , Política
11.
Environ Res ; 152: 308-314, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27833058

RESUMO

Despite of the fact that engine manufacturers develop a new technology to reduce exhaust emissions, insufficient attention given to particulate emissions. However, diesel exhaust particles are a major source of air-borne pollution, contain vast amount of polycyclic aromatic hydrocarbons (PAHs) and may have deleterious effects on the immune system, resulting in the induction and enhancement of pro-allergic processes. In the current study, vehicle emitted particles (VEP) from 2 different types of cars (diesel - D and gasoline - G) and locomotive (L) were collected. Overall, 129 four-week-old, male SPF-class Kunming mice were subcutaneously instilled with either low dose 100, 250 or high dose, 500mg/kg VEP and 15 mice were assigned as control group. The systemic toxicity was evaluated and alterations in the percentages of the CD3, CD4, CD8, CD16, CD25 expressing cells, basophils, eosinophils and neutrophils were determined. Basophil percentages were inversely associated with the PAH content of the VEPs, however basophil sensitization was more important than cell count in VEP exposure. Thus, the effects of VEP-PAHs emerge with the activation of basophils in an allergen independent fashion. Despite the increased percentage of CD4+ T cells, a sharp decrease in basophil counts at 500mg/kg of VEP indicates a decreased inhibitory effect of CD16+ monocytes on the proliferation of CD4+ T cell and suppressed polarization into a Th2 phenotype. Therefore, although the restrictions for vehicles emissions differ between countries, follow up studies and strict regulations are needed.


Assuntos
Poluentes Atmosféricos/toxicidade , Basófilos/efeitos dos fármacos , Basófilos/imunologia , Inflamação/imunologia , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Emissões de Veículos/toxicidade , Animais , Automóveis , Inflamação/induzido quimicamente , Masculino , Camundongos , Federação Russa , Organismos Livres de Patógenos Específicos
12.
Environ Res ; 142: 479-85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26264860

RESUMO

The study aims at investigating the characteristics (size distribution, active surface and metal content) of particles emitted by cars as a function of mileage using a novel methodology for characterizing particulate emissions captured by Exhaust Gas Suspension (EGS). EGS was obtained by passing the exhaust gases through a container of deionized water. EGS analysis was performed using laser granulometry, electron scanning microscopy, and high resolution mass spectrometry. Implications of the differences in key features of the emitted particles on population exposure were investigated using numerical simulation for estimating size-segregated PM deposition across human respiratory tract (HRT). It was found that vehicle mileage, age and the respective emissions class have almost no effect on the size distribution of the exhaust gas particulate released into the environment; about half of the examined vehicles with low mileage were found to release particles of aerodynamic diameter above 10 µm. The exhaust gas particulate detected in the EGS of all cars can be classified into three major size classes: (1) 0.1-5 µm - soot and ash particles, metals (Au, Pt, Pd, Ir); (2) 10-30 µm - metal (Cr, Fe, Cu, Zr, Ni) and ash particles; (3) 400-1,000 µm - metal (Fe, Cr, Pb) and ash particles. Newer vehicles with low mileage are substantial sources of soot and metal particles with median diameter of 200 nm with a higher surface area (up to 89,871.16 cm(2)/cm(3)). These tend to deposit in the lower part of the human respiratory tract.


Assuntos
Poluentes Atmosféricos/análise , Exposição Ambiental , Metais Pesados/análise , Veículos Automotores , Material Particulado/análise , Emissões de Veículos/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Saúde Ambiental , Veículos Automotores/normas , Tamanho da Partícula , Federação Russa , Propriedades de Superfície , Urbanização
13.
Curr Health Sci J ; 50(1): 94-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846475

RESUMO

The current study aimed to assess the possible endocrine disruptor effects on rat mammary tissue and reproductive organs during pregnancy and lactation when exposed to low doses of glyphosate and its combination with 2,4-dichlorophenoxyacetic acid (2,4-D) and dicamba. The study involved the exposure of pregnant Wistar rats to various regulatory-relevant doses of glyphosate, ranging from gestational day 6 until fine of the lactation period. Glyphosate doses corresponded to the European Union's glyphosate-acceptable daily intake (ADI; 0.5mg/kg bw/day) and no observed adverse effect level (NOAEL; 50mg/kg bw/day). The dose of the mixture of glyphosate, dicamba, and 2,4-D was at the European Union ADI for each herbicide namely 0.5, 0.002, and 0.3mg/kg bw/day, respectively. In the animals exposed to glyphosate NOAEL serum estradiol levels were increased compared to untreated animals, along with an upregulation of TNF-?, MMP-2, and MMP-9 as measured in mammary gland homogenates compared to non-treated animals. Moreover, in this group, a focally acute inflammatory infiltrate was observed in the mammary gland. Our study showed that short-term exposure to glyphosate at doses that are set as safe by regulators and thus without risk corroborated with a particular physiological state as gestation and lactation, can give rise to inflammatory changes in breast tissue in rats. These findings support the need for further evaluation of glyphosate and mixtures of glyphosate with other pesticides for public health protection, especially for those categories vulnerable to the potential endocrine disruptor properties of these pesticides such as pregnant women, newborns, and children.

14.
Mar Drugs ; 11(9): 3155-67, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-24065158

RESUMO

Silaffins are involved in the formation of the cell walls of diatoms. It is known that silaffins can precipitate silica in vitro, forming nano- and micro-particles in the shape of spheres and plates containing many pores. It is important to note that the deposition of silica and the particle morphology in the presence of silaffins affects chemical and physical agents (e.g., peptides, polyamines, phosphate, nitrogen, and the mechanical changes of the reaction mixture). It is believed that silaffins act as an organic matrix for silica-genesis and that silica pore size should reflect the pattern of a matrix. Here, biotechnology related to silaffins is discussed in the context of "a hypothesis of silaffin matrix" and "the LCPA-phosphate model". We discuss the most promising area of silaffin biotechnology--the development of production methods for silicon structures with desired shapes and nanostructural properties that can be used to create biocompatible materials.


Assuntos
Diatomáceas/química , Diatomáceas/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Biotecnologia/métodos , Humanos , Nanoestruturas/química , Dióxido de Silício/química
15.
Antioxidants (Basel) ; 12(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36671036

RESUMO

Previous studies have shown that salinity eustress enhances the nutritional and bioactive compounds and antiradical capacity (ARC) of vegetables and increases the food values for nourishing human diets. Amaranth is a salinity-resistant, rapidly grown C4 leafy vegetable with diverse variability and usage. It has a high possibility to enhance nutritional and bioactive compounds and ARC by the application of salinity eustress. Hence, the present study aimed to evaluate the effects of sodium chloride stress response in a selected Lalshak (A. gangeticus) genotype on minerals, ascorbic acid (AsA), Folin−Ciocalteu reducing capacity, beta-carotene (BC), total flavonoids (TF), pigments, polyphenolic profiles, and ARC. A high-yield, high-ARC genotype (LS6) was grown under conditions of 0, 25, 50, and 100 mM sodium chloride in four replicates following a block design with complete randomization. We recognized nine copious polyphenolic compounds in this accession for the first time. Minerals, Folin−Ciocalteu reducing capacity, AsA, BC, pigments, polyphenolic profiles, and ARC of Lalshak were augmented progressively in the order: 0 < 25 < 50 < 100 mM sodium chloride. At 50 mM and 100 mM salt concentrations, minerals, AsA, Folin−Ciocalteu reducing capacity, BC, TF, pigments, polyphenolic profiles, and ARC of Lalshak were much greater than those of the control. Lalshak could be used as valuable food for human diets as a potent antioxidant. Sodium chloride-enriched Lalshak provided outstanding quality to the final product in terms of minerals, AsA, Folin−Ciocalteu reducing capacity, BC, TF, pigments, polyphenolic profiles, and ARC. We can cultivate it as a promising alternative crop in salinity-prone areas of the world.

16.
Plants (Basel) ; 12(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36771542

RESUMO

Weed infestation is a prime challenge coupled with lowering crop production owing to their competition with crop plants for available resources such as nutrients, water, space, moisture, and sunlight. Among weed control methods, the implementation of synthetic herbicides offers an instant solution for getting rid of weeds; however, they are a direct source of potential hazards for humans and generate resistance against synthetic weedicides, making them less effective. Allelopathy is something that happens in nature that can be used as a weed control method that increases crop yield and decreases dependency on synthetic chemicals. The mode of action of some phytochemicals corresponds to synthetic herbicides. Due to this feature, allelochemicals are used as bio-herbicides in weed management and prove more environmentally friendly than synthetic weedicides. The present investigation aims to assess the ultra-responses of A. tenuifolius and C. arvensis, while growing them in a pot experiment. Various levels of shoot extract (L2, L3, and L4) of T. portulacastrum along with the L1 (distilled water) and L5 (synthetic herbicide) were applied to the weeds. Results indicated that aqueous extracts of shoot of T. portulacastrum significantly (p ≤ 0.05) affect all the measured traits of weeds and their effects were concentration specific. All morphological parameters were suppressed due to biotic stress with an increase in free amino acids and calcium ions along with a decline in metaxylem cell area and cortical thickness in the root, while the vascular bundle area increased. The shoot extract intrusive with metabolisms corresponded with the synthetic herbicide. It is concluded that Trianthema shoot extract has a powerful phytotoxic impact on weeds (A. tenuifolius and C. arvensis) and can be used in bio-herbicide production.

17.
Plants (Basel) ; 12(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37653901

RESUMO

Mungbean [Vigna radiata (L.) Wilczek] is an important food, feed, and cash crop in rice-based agricultural ecosystems in Southeast Asia and other continents. It has the potential to enhance livelihoods due to its palatability, nutritional content, and digestibility. We evaluated 166 diverse mungbean genotypes in two seasons using multivariate and multi-traits index approaches to identify superior genotypes. The total Shannon diversity index (SDI) for qualitative traits ranged from moderate for terminal leaflet shape (0.592) to high for seed colour (1.279). The analysis of variances (ANOVA) indicated a highly significant difference across the genotypes for most of the studied traits. Descriptive analyses showed high diversity among genotypes for all morphological traits. Six components with eigen values larger than one contributed 76.50% of the variability in the principal component analysis (PCA). The first three PCs accounted for the maximum 29.90%, 15.70%, and 11.20% of the total variances, respectively. Yield per plant, pod weight, hundred seed weight, pod length, days to maturity, pods per plant, harvest index, biological yield per plant, and pod per cluster contributed more to PC1 and PC2 and showed a positive association and positive direct effect on seed yield. The genotypes were grouped into seven clusters with the maximum in cluster II (34) and the minimum in cluster VII (10) along with a range of intra-cluster and inter-cluster distances of 5.15 (cluster II) to 3.60 (cluster VII) and 9.53 (between clusters II and VI) to 4.88 (clusters I and VII), suggesting extreme divergence and the possibility for use in hybridization and selection. Cluster III showed the highest yield and yield-related traits. Yield per plant positively and significantly correlated with pod traits and hundred seed weight. Depending on the multi-trait stability index (MTSI), clusters I, III, and VII might be utilized as parents in the hybridization program to generate high-yielding, disease-resistant, and small-seeded mungbean. Based on all multivariate-approaches, G45, G5, G22, G55, G143, G144, G87, G138, G110, G133, and G120 may be considered as the best parents for further breeding programs.

18.
Biomedicines ; 11(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36979808

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin and indomethacin (IND) are the most commonly prescribed for inflammation or pain. However, widespread use causes several adverse effects, such as gastric ulcers, upper gastric system bleeding, and erosions. Carnosic acid (CA) is an important natural antioxidant found in rosemary (Rosmarinus essentials) and exhibits a protective effect by suppressing oxidative stress and inflammation. This study aimed to investigate the impact of CA on IND-induced gastric ulceration. Wistar male rats received CA (100 mg/kg) or esomeprazole (ESP) (20 mg/kg, standard drug) by oral gavage for 14 days, after that gastric ulceration was induced by oral administration of 100 mg/kg IND. CA pretreatment attenuated both gross morphological lesions and histopathological alterations. CA strongly reduced IND-induced oxidative stress, verified by a decrease in MDA (p < 0.001) and TOS levels (p < 0.05). Furthermore, an IND-dependent increase in CAT (p < 0.001) and GPx (p < 0.01) activities, as well as a reduction in GSH levels (p < 0.01), were ameliorated by CA pretreatment. CA also attenuated inflammatory damage by suppressing IL-1ß (p < 0.01), IL-6 (p < 0.01), and TNFα (p < 0.001) production and increasing Nrf2/HO-1 (p < 0.05) expressions. In conclusion, CA shows a gastroprotective effect by reducing oxidative stress and attenuating inflammation.

19.
Front Nutr ; 10: 1057084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139458

RESUMO

Rapid senescence is the key factor in the deterioration of post-harvest shelf-life in broccoli heads. This study evaluates the head yield and its related traits, and physicochemical attributes of broccoli under four foliar sprays of mineral nutrients (B, Zn, Mo, and B + Zn + Mo) with control. The interaction effects of shelf-life and physicochemical attributes of broccoli for these five pre-harvest and five post-harvest storage treatments (LDP bag, HDP vacuum pack, 2% eggshell powder solution, 2% ascorbic acid, and control) both at cold storage and room temperature were evaluated with three replications. The significantly higher marketable head yield of 28.02 t ha-1, maximum gross return [(Bangladesh Taka (BDT 420300 ha-1)], net return (BDT 30565 ha-1), and maximum benefit-cost ratio (BCR) of 3.67 were obtained from the pre-harvest foliar application of B + Zn + Mo in broccoli. Pre-harvest foliar spray of combined nutrient B + Zn + Mo and post-harvest treatment high-density polyethylene (HDP, 15 µm) vacuum packaging efficiently improve post-harvest physicochemical attributes, viz., compactness, green color, texture, carbohydrates, fats, energy, antioxidants, vitamin C, and total phenols in broccoli head compared to the rest of the treatment combinations. In addition, this treatment combination also confirmed a maximum shelf-life of 24.55 days at cold storage [relative humidity (RH) 90-95% and 4°C] and 7.05 days at room temperature (RH 60-65% and 14-22°C) compared to the rest of the treatment combinations. Therefore, we recommend a pre-harvest foliar spray of combined nutrient elements B + Zn + Mo and an HDP (15 µm) vacuum post-harvest packaging for the maximum benefits for both farmers and consumers to get the best head yield, anticipated physicochemical attributes, and maximum shelf-life of broccoli.

20.
Plants (Basel) ; 12(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299058

RESUMO

Lentil yield is a complicated quantitative trait; it is significantly influenced by the environment. It is crucial for improving human health and nutritional security in the country as well as for a sustainable agricultural system. The study was laid out to determine the stable genotype through the collaboration of G × E by AMMI and GGE biplot and to identify the superior genotypes using 33 parametric and non-parametric stability statistics of 10 genotypes across four different conditions. The total G × E effect was divided into two primary components by the AMMI model. For days to flowering, days to maturity, plant height, pods per plant, and hundred seed weight, IPCA1 was significant and accounted for 83%, 75%, 100%, and 62%, respectively. Both IPCA1 and IPCA2 were non-significant for yield per plant and accounted for 62% of the overall G × E interaction. An estimated set of eight stability parameters showed strong positive correlations with mean seed yield, and these measurements can be utilized to choose stable genotypes. The productivity of lentils has varied greatly in the environment, ranging from 786 kg per ha in the MYM environment to 1658 kg per ha in the ISD environment, according to the AMMI biplot. Three genotypes (G8, G7, and G2) were shown to be the most stable based on non-parametric stability scores for grain yield. G8, G7, G2, and G5 were determined as the top lentil genotypes based on grain production using numerical stability metrics such as Francis's coefficient of variation, Shukla stability value (σi2), and Wrick's ecovalence (Wi). Genotypes G7, G10, and G4 were the most stable with the highest yield, according to BLUP-based simultaneous selection stability characteristics. The findings of graphic stability methods such as AMMI and GGE for identifying the high-yielding and stable lentil genotypes were very similar. While the GGE biplot indicated G2, G10, and G7 as the most stable and high-producing genotypes, AMMI analysis identified G2, G9, G10, and G7. These selected genotypes would be used to release a new variety. Considering all the stability models, such as Eberhart and Russell's regression and deviation from regression, additive main effects, multiplicative interactions (AMMI) analysis, and GGE, the genotypes G2, G9, and G7 could be used as well-adapted genotypes with moderate grain yield in all tested environments.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa