Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 136(Pt 7): 2262-78, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23748155

RESUMO

The number of Schwann cells is fitted to axonal length in peripheral nerves. This relationship is lost when tumorigenic stimuli induce uncontrolled Schwann cell proliferation, generating tumours such us neurofibromas and schwannomas. Schwann cells also re-enter the cell cycle following nerve injury during the process of Wallerian degeneration. In both cases proliferation is finally arrested. We show that in neurofibroma, the induction of Jmjd3 (jumonji domain containing 3, histone lysine demethylase) removes trimethyl groups on lysine-27 of histone-H3 and epigenetically activates the Ink4a/Arf-locus, forcing Schwann cells towards replicative senescence. Remarkably, blocking this mechanism allows unrestricted proliferation, inducing malignant transformation of neurofibromas. Interestingly, our data suggest that in injured nerves, Schwann cells epigenetically activate the same locus to switch off proliferation and enter the senescence programme. Indeed, when this pathway is genetically blocked, Schwann cells fail to drop out of the cell cycle and continue to proliferate. We postulate that the Ink4a/Arf-locus is expressed as part of a physiological response that prevents uncontrolled proliferation of the de-differentiated Schwann cell generated during nerve regeneration, a response that is also activated to avoid overproliferation after tumorigenic stimuli in the peripheral nervous system.


Assuntos
Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Regulação da Expressão Gênica/genética , Regeneração Nervosa/fisiologia , Neurofibroma/patologia , Células de Schwann/fisiologia , Degeneração Walleriana/patologia , Fatores Etários , Animais , Animais Recém-Nascidos , Axônios/patologia , Axônios/ultraestrutura , Células Cultivadas , Senescência Celular/genética , Imunoprecipitação da Cromatina , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Modelos Animais de Doenças , Progressão da Doença , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Epigenômica , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Regeneração Nervosa/genética , Neuregulina-1/genética , Neurofibroma/genética , Neurofibroma/fisiopatologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/metabolismo , Células de Schwann/patologia , Células de Schwann/ultraestrutura , Nervo Isquiático/citologia , Transdução de Sinais/genética , Transfecção , Proteína Supressora de Tumor p53/deficiência , Degeneração Walleriana/etiologia , Degeneração Walleriana/fisiopatologia
2.
J Cell Biol ; 217(4): 1249-1268, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29472387

RESUMO

Schwann cells respond to cyclic adenosine monophosphate (cAMP) halting proliferation and expressing myelin proteins. Here we show that cAMP signaling induces the nuclear shuttling of the class IIa histone deacetylase (HDAC)-4 in these cells, where it binds to the promoter and blocks the expression of c-Jun, a negative regulator of myelination. To do it, HDAC4 does not interfere with the transcriptional activity of MEF2. Instead, by interacting with NCoR1, it recruits HDAC3 and deacetylates histone 3 in the promoter of c-Jun, blocking gene expression. Importantly, this is enough to up-regulate Krox20 and start Schwann cell differentiation program-inducing myelin gene expression. Using conditional knockout mice, we also show that HDAC4 together with HDAC5 redundantly contribute to activate the myelin transcriptional program and the development of myelin sheath in vivo. We propose a model in which cAMP signaling shuttles class IIa HDACs into the nucleus of Schwann cells to regulate the initial steps of myelination in the peripheral nervous system.


Assuntos
AMP Cíclico/metabolismo , Histona Desacetilases/metabolismo , Bainha de Mielina/metabolismo , Fibras Nervosas Mielinizadas/enzimologia , Células de Schwann/enzimologia , Nervo Isquiático/enzimologia , Transcrição Gênica , Transporte Ativo do Núcleo Celular , Animais , Sítios de Ligação , Células Cultivadas , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Histona Desacetilases/deficiência , Histona Desacetilases/genética , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos Knockout , Bainha de Mielina/genética , Fibras Nervosas Mielinizadas/ultraestrutura , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos Wistar , Células de Schwann/ultraestrutura , Nervo Isquiático/ultraestrutura , Sistemas do Segundo Mensageiro , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa