Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563317

RESUMO

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, leaving the inflammation process without a proper resolution, leading to tissue damage and possibly sequelae. The central nervous system (CNS) is one of the first regions affected by the peripheral inflammation caused by sepsis, exposing the neurons to an environment of oxidative stress, triggering neuronal dysfunction and apoptosis. Sepsis-associated encephalopathy (SAE) is the most frequent sepsis-associated organ dysfunction, with symptoms such as deliriums, seizures, and coma, linked to increased mortality, morbidity, and cognitive disability. However, the current therapy does not avoid those patients' symptoms, evidencing the search for a more optimal approach. Herein we focus on microglia as a prominent therapeutic target due to its multiple functions maintaining CNS homeostasis and its polarizing capabilities, stimulating and resolving neuroinflammation depending on the stimuli. Microglia polarization is a target of multiple studies involving nerve cell preservation in diseases caused or aggravated by neuroinflammation, but in sepsis, its therapeutic potential is overlooked. We highlight the peroxisome proliferator-activated receptor gamma (PPARγ) neuroprotective properties, its role in microglia polarization and inflammation resolution, and the interaction with nuclear factor-κB (NF-κB) and mitogen-activated kinases (MAPK), making PPARγ a molecular target for sepsis-related studies to come.


Assuntos
Microglia , Sepse , Humanos , Inflamação , Microglia/citologia , Microglia/metabolismo , Insuficiência de Múltiplos Órgãos , PPAR gama/uso terapêutico , Sepse/metabolismo , Sepse/terapia
2.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467433

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily that regulate the expression of genes related to lipid and glucose metabolism and inflammation. There are three members: PPARα, PPARß or PPARγ. PPARγ have several ligands. The natural agonists are omega 9, curcumin, eicosanoids and others. Among the synthetic ligands, we highlight the thiazolidinediones, clinically used as an antidiabetic. Many of these studies involve natural or synthetic products in different pathologies. The mechanisms that regulate PPARγ involve post-translational modifications, such as phosphorylation, sumoylation and ubiquitination, among others. It is known that anti-inflammatory mechanisms involve the inhibition of other transcription factors, such as nuclear factor kB(NFκB), signal transducer and activator of transcription (STAT) or activator protein 1 (AP-1), or intracellular signaling proteins such as mitogen-activated protein (MAP) kinases. PPARγ transrepresses other transcription factors and consequently inhibits gene expression of inflammatory mediators, known as biomarkers for morbidity and mortality, leading to control of the exacerbated inflammation that occurs, for instance, in lung injury/acute respiratory distress. Many studies have shown the therapeutic potentials of PPARγ on pulmonary diseases. Herein, we describe activities of the PPARγ as a modulator of inflammation, focusing on lung injury and including definition and mechanisms of regulation, biological effects and molecular targets, and its role in lung diseases caused by inflammatory stimuli, bacteria and virus, and molecular-based therapy.


Assuntos
Inflamação/metabolismo , Pneumopatias/metabolismo , PPAR gama/metabolismo , Transdução de Sinais/fisiologia , Animais , Curcumina/metabolismo , Curcumina/farmacologia , Eicosanoides/metabolismo , Eicosanoides/farmacologia , Humanos , Ligantes , Pneumopatias/tratamento farmacológico , PPAR gama/agonistas , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
3.
Int J Mol Sci ; 21(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599864

RESUMO

The Mediterranean diet (MedDiet) consists of consumption of vegetables and healthy oils and have beneficial effects on metabolic and inflammatory diseases. Our goal here is to discuss the role of fatty acid content in MedDiet, mostly omega-3, omega-6, and omega-9 on malaria. Malaria affects millions of people around the globe. The parasite Plasmodium causes the disease. The metabolic and inflammatory alterations in the severe forms have damaging consequences to the host. The lipid content in the MedDiet holds anti-inflammatory and pro-resolutive features in the host and have detrimental effects on the Plasmodium. The lipids from the diet impact the balance of pro- and anti-inflammation, thus, lipids intake from the diet is critical to parasite elimination and host tissue damage caused by an immune response. Herein, we go into the cellular and molecular mechanisms and targets of the MedDiet fatty acids in the host and the parasite, reviewing potential benefits of the MedDiet, on inflammation, malaria infection progression, and clinical outcome.


Assuntos
Anti-Inflamatórios/administração & dosagem , Dieta Mediterrânea , Inflamação/dietoterapia , Lipídeos/análise , Malária Falciparum/prevenção & controle , Plasmodium falciparum/isolamento & purificação , Humanos , Inflamação/patologia , Malária Falciparum/parasitologia
4.
Microcirculation ; 23(4): 320-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27086551

RESUMO

OBJECTIVES: The objective of this study was to investigate the role of the SNS on hemodynamic, metabolic, and microvascular alterations in a rat model of HFD-induced MS with salt supplementation. METHODS: In total, 40 adult male Wistar rats were fed normal chow (n = 10) or a HFD (n = 30) for 20 weeks. Thereafter, the HFD group received the centrally acting sympatho-modulatory drugs clonidine (0.1 mg/kg) or rilmenidine (1 mg/kg) or vehicle (n = 10/group) orally by gavage. FCD was evaluated using intravital video microscopy, and the SCD was evaluated using histochemical analysis. RESULTS: The pharmacological modulation of the SNS induced concomitant reductions in SBP, HR and plasma catecholamine levels. These effects were accompanied by a reversal of functional and structural capillary rarefaction in the skeletal muscle in both treated groups and an increase in SCD in the left ventricle only in the rilmenidine group. Improvement of the lipid profile and of glucose intolerance was also obtained only with rilmenidine treatment. CONCLUSIONS: Modulation of sympathetic overactivity results in the reversal of microvascular rarefaction in the skeletal muscle and left ventricle and improves metabolic parameters in an experimental model of MS in rats.


Assuntos
Dieta Hiperlipídica , Síndrome Metabólica/etiologia , Microvasos/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Simpatolíticos/farmacologia , Agonistas alfa-Adrenérgicos , Animais , Clonidina/farmacologia , Microscopia Intravital , Masculino , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/tratamento farmacológico , Microcirculação/efeitos dos fármacos , Músculo Esquelético/irrigação sanguínea , Oxazóis/farmacologia , Ratos , Ratos Wistar , Rilmenidina , Cloreto de Sódio na Dieta/farmacologia , Simpatolíticos/uso terapêutico
5.
Respir Res ; 17(1): 158, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27887604

RESUMO

BACKGROUND: Variable ventilation has been shown to improve pulmonary function and reduce lung damage in different models of acute respiratory distress syndrome. Nevertheless, variable ventilation has not been tested during pneumonia. Theoretically, periodic increases in tidal volume (VT) and airway pressures might worsen the impairment of alveolar barrier function usually seen in pneumonia and could increase bacterial translocation into the bloodstream. We investigated the impact of variable ventilation on lung function and histologic damage, as well as markers of lung inflammation, epithelial and endothelial cell damage, and alveolar stress, and bacterial translocation in experimental pneumonia. METHODS: Thirty-two Wistar rats were randomly assigned to receive intratracheal of Pseudomonas aeruginosa (PA) or saline (SAL) (n = 16/group). After 24-h, animals were anesthetized and ventilated for 2 h with either conventional volume-controlled (VCV) or variable volume-controlled ventilation (VV), with mean VT = 6 mL/kg, PEEP = 5cmH2O, and FiO2 = 0.4. During VV, tidal volume varied randomly with a coefficient of variation of 30% and a Gaussian distribution. Additional animals assigned to receive either PA or SAL (n = 8/group) were not ventilated (NV) to serve as controls. RESULTS: In both SAL and PA, VV improved oxygenation and lung elastance compared to VCV. In SAL, VV decreased interleukin (IL)-6 expression compared to VCV (median [interquartile range]: 1.3 [0.3-2.3] vs. 5.3 [3.6-7.0]; p = 0.02) and increased surfactant protein-D expression compared to NV (2.5 [1.9-3.5] vs. 1.2 [0.8-1.2]; p = 0.0005). In PA, compared to VCV, VV reduced perivascular edema (2.5 [2.0-3.75] vs. 6.0 [4.5-6.0]; p < 0.0001), septum neutrophils (2.0 [1.0-4.0] vs. 5.0 [3.3-6.0]; p = 0.0008), necrotizing vasculitis (3.0 [2.0-5.5] vs. 6.0 [6.0-6.0]; p = 0.0003), and ultrastructural lung damage scores (16 [14-17] vs. 24 [14-27], p < 0.0001). Blood colony-forming-unit (CFU) counts were comparable (7 [0-28] vs. 6 [0-26], p = 0.77). Compared to NV, VCV, but not VV, increased expression amphiregulin, IL-6, and cytokine-induced neutrophil chemoattractant (CINC)-1 (2.1 [1.6-2.5] vs. 0.9 [0.7-1.2], p = 0.025; 12.3 [7.9-22.0] vs. 0.8 [0.6-1.9], p = 0.006; and 4.4 [2.9-5.6] vs. 0.9 [0.8-1.4], p = 0.003, respectively). Angiopoietin-2 expression was lower in VV compared to NV animals (0.5 [0.3-0.8] vs. 1.3 [1.0-1.5], p = 0.01). CONCLUSION: In this rat model of pneumonia, VV improved pulmonary function and reduced lung damage as compared to VCV, without increasing bacterial translocation.


Assuntos
Translocação Bacteriana , Pulmão/fisiopatologia , Pneumonia Bacteriana/terapia , Infecções por Pseudomonas/terapia , Respiração Artificial/métodos , Algoritmos , Animais , Células Endoteliais/patologia , Células Epiteliais/patologia , Inflamação/patologia , Pulmão/ultraestrutura , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/fisiopatologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/fisiopatologia , Alvéolos Pulmonares/patologia , Ratos , Ratos Wistar , Testes de Função Respiratória , Volume de Ventilação Pulmonar
6.
Cell Physiol Biochem ; 36(4): 1644-58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26160269

RESUMO

BACKGROUND/AIMS: Evidence suggests that tyrosine-kinase inhibitors may attenuate lung inflammation and fibrosis in experimental acute respiratory distress syndrome (ARDS). We hypothesized that dasatinib, a tyrosine-kinase inhibitor, might act differently depending on the ARDS etiology and the dose. METHODS: C57/BL6 mice were divided to be pre-treated with dasatinib (1mg/kg or 10mg/kg) or vehicle (1% dimethyl-sulfoxide) by oral gavage. Thirty-minutes after pre-treatment, mice were subdivided into control (C) or ARDS groups. ARDS animals received Escherichia coli lipopolysaccharide intratracheally (ARDSp) or intraperitoneally (ARDSexp). A new dose of dasatinib or vehicle was administered at 6 and 24h. RESULTS: Forty-eight hours after ARDS induction, dasatinib 1mg/kg yielded: improved lung morphofunction and reduced cells expressing toll-like receptor (TLR)-4 in lung, independent of ARDS etiology; reduced neutrophil and levels of interleukin (IL)-6, IL-10 and transforming growth factor (TGF)-ß in ARDSp. The higher dose of dasatinib caused no changes in lung mechanics, diffuse alveolar damage, neutrophil, or cells expressing TLR4, but increased IL-6, vascular endothelial growth factor (VEGF), and cells expressing Fas receptor in lung in ARDSp. In ARDSexp, it improved lung morphofunction, increased VEGF, and reduced cells expressing TLR4. Conclusion: Dasatinib may have therapeutic potential in ARDS independent of etiology, but careful dose monitoring is required.


Assuntos
Dasatinibe/uso terapêutico , Pulmão/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/etiologia , Animais , Dasatinibe/administração & dosagem , Interleucina-10/análise , Interleucina-6/análise , Pulmão/patologia , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/administração & dosagem , Síndrome do Desconforto Respiratório/patologia , Receptor 4 Toll-Like/análise , Fator de Crescimento Transformador beta/análise , Fator A de Crescimento do Endotélio Vascular/análise
7.
Pharmaceutics ; 16(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38931823

RESUMO

Malaria poses a global threat to human health, with millions of cases and thousands of deaths each year, mainly affecting developing countries in tropical and subtropical regions. Malaria's causative agent is Plasmodium species, generally transmitted in the hematophagous act of female Anopheles sp. mosquitoes. The main approaches to fighting malaria are eliminating the parasite through drug treatments and preventing transmission with vector control. However, vector and parasite resistance to current strategies set a challenge. In response to the loss of drug efficacy and the environmental impact of pesticides, the focus shifted to the search for biocompatible products that could be antimalarial. Plant derivatives have a millennial application in traditional medicine, including the treatment of malaria, and show toxic effects towards the parasite and the mosquito, aside from being accessible and affordable. Its disadvantage lies in the type of administration because green chemical compounds rapidly degrade. The nanoformulation of these compounds can improve bioavailability, solubility, and efficacy. Thus, the nanotechnology-based development of plant products represents a relevant tool in the fight against malaria. We aim to review the effects of nanoparticles synthesized with plant extracts on Anopheles and Plasmodium while outlining the nanotechnology green synthesis and current malaria prevention strategies.

8.
JHEP Rep ; 6(2): 100984, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38293685

RESUMO

Background & Aims: Lipid droplet (LD) accumulation in cells and tissues is understood to be an evolutionarily conserved tissue tolerance mechanism to prevent lipotoxicity caused by excess lipids; however, the presence of excess LDs has been associated with numerous diseases. Sepsis triggers the reprogramming of lipid metabolism and LD accumulation in cells and tissues, including the liver. The functions and consequences of sepsis-triggered liver LD accumulation are not well known. Methods: Experimental sepsis was induced by CLP (caecal ligation and puncture) in mice. Markers of hepatic steatosis, liver injury, hepatic oxidative stress, and inflammation were analysed using a combination of functional, imaging, lipidomic, protein expression and immune-enzymatic assays. To prevent LD formation, mice were treated orally with A922500, a pharmacological inhibitor of DGAT1. Results: We identified that liver LD overload correlates with liver injury and sepsis severity. Moreover, the progression of steatosis from 24 h to 48 h post-CLP occurs in parallel with increased cytokine expression, inflammatory cell recruitment and oxidative stress. Lipidomic analysis of purified LDs demonstrated that sepsis leads LDs to harbour increased amounts of unsaturated fatty acids, mostly 18:1 and 18:2. An increased content of lipoperoxides within LDs was also observed. Conversely, the impairment of LD formation by inhibition of the DGAT1 enzyme reduces levels of hepatic inflammation and lipid peroxidation markers and ameliorates sepsis-induced liver injury. Conclusions: Our results indicate that sepsis triggers lipid metabolism alterations that culminate in increased liver LD accumulation. Increased LDs are associated with disease severity and liver injury. Moreover, inhibition of LD accumulation decreased the production of inflammatory mediators and lipid peroxidation while improving tissue function, suggesting that LDs contribute to the pathogenesis of liver injury triggered by sepsis. Impact and Implications: Sepsis is a complex life-threatening syndrome caused by dysregulated inflammatory and metabolic host responses to infection. The observation that lipid droplets may contribute to sepsis-associated organ injury by amplifying lipid peroxidation and inflammation provides a rationale for therapeutically targeting lipid droplets and lipid metabolism in sepsis.

9.
Oxid Med Cell Longev ; 2022: 9966750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111166

RESUMO

Plant preparations have been used to treat various diseases and discussed for centuries. Research has advanced to discover and identify the plant components with beneficial effects and reveal their underlying mechanisms. Flavonoids are phytoconstituents with anti-inflammatory, antimutagenic, anticarcinogenic, and antimicrobial properties. Herein, we listed and contextualized various aspects of the protective effects of the flavonols quercetin, isoquercetin, kaempferol, and myricetin and the flavones luteolin, apigenin, 3',4'-dihydroxyflavone, baicalein, scutellarein, lucenin-2, vicenin-2, diosmetin, nobiletin, tangeretin, and 5-O-methyl-scutellarein. We presented their structural characteristics and subclasses, importance, occurrence, and food sources. The bioactive compounds present in our diet, such as fruits and vegetables, may affect the health and disease state. Therefore, we discussed the role of these compounds in inflammation, oxidative mechanisms, and bacterial metabolism; moreover, we discussed their synergism with antibiotics for better disease outcomes. Indiscriminate use of antibiotics allows the emergence of multidrug-resistant bacterial strains; thus, bioactive compounds may be used for adjuvant treatment of infectious diseases caused by resistant and opportunistic bacteria via direct and indirect mechanisms. We also focused on the reported mechanisms and intracellular targets of flavonols and flavones, which support their therapeutic role in inflammatory and infectious diseases.


Assuntos
Anti-Infecciosos , Flavonas , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Apigenina , Flavonas/farmacologia , Flavonoides/farmacologia , Flavonóis/farmacologia , Quempferóis , Luteolina , Preparações de Plantas , Quercetina
10.
PLoS One ; 16(2): e0246891, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33577592

RESUMO

BACKGROUND: During pneumonia, normal alveolar areas coexist adjacently with consolidated areas, and high inspiratory efforts may predispose to lung damage. To date, no study has evaluated different degrees of effort during Biphasic positive airway pressure (BIVENT) on lung and diaphragm damage in experimental pneumonia, though largely used in clinical setting. We aimed to evaluate lung damage, genes associated with ventilator-induced lung injury (VILI) and diaphragmatic injury, and blood bacteria in pressure-support ventilation (PSV), BIVENT with low and high inspiratory efforts in experimental pneumonia. MATERIAL AND METHODS: Twenty-eight male Wistar rats (mean ± SD weight, 333±78g) were submitted Pseudomonas aeruginosa-induced pneumonia. After 24-h, animals were ventilated for 1h in: 1) PSV; 2) BIVENT with low (BIVENTLow-Effort); and 3) BIVENT with high inspiratory effort (BIVENTHigh-Effort). BIVENT was set at Phigh to achieve VT = 6 ml/kg and Plow at 5 cmH2O (n = 7/group). High- and low-effort conditions were obtained through anaesthetic infusion modulation based on neuromuscular drive (P0.1). Lung mechanics, histological damage score, blood bacteria, and expression of genes related to VILI in lung tissue, and inflammation in diaphragm tissue. RESULTS: Transpulmonary peak pressure and histological damage score were higher in BIVENTHigh-Effort compared to BIVENTLow-Effort and PSV [16.1 ± 1.9cmH2O vs 12.8 ± 1.5cmH2O and 12.5 ± 1.6cmH2O, p = 0.015, and p = 0.010; median (interquartile range) 11 (9-13) vs 7 (6-9) and 7 (6-9), p = 0.021, and p = 0.029, respectively]. BIVENTHigh-Effort increased interleukin-6 expression compared to BIVENTLow-Effort (p = 0.035) as well as expressions of cytokine-induced neutrophil chemoattractant-1, amphiregulin, and type III procollagen compared to PSV (p = 0.001, p = 0.001, p = 0.004, respectively). Tumour necrosis factor-α expression in diaphragm tissue and blood bacteria were higher in BIVENTHigh-Effort than BIVENTLow-Effort (p = 0.002, p = 0.009, respectively). CONCLUSION: BIVENT requires careful control of inspiratory effort to avoid lung and diaphragm damage, as well as blood bacteria. P0.1 might be considered a helpful parameter to optimize inspiratory effort.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas/efeitos adversos , Pulmão/patologia , Pneumonia Bacteriana/terapia , Infecções por Pseudomonas/terapia , Pseudomonas aeruginosa/isolamento & purificação , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Animais , Diafragma/patologia , Modelos Animais de Doenças , Masculino , Pneumonia Bacteriana/patologia , Infecções por Pseudomonas/patologia , Ratos Wistar , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
11.
Biomed Res Int ; 2020: 2813253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32461975

RESUMO

Alphaviruses are arthropod-borne viruses that can cause fever, rash, arthralgias, and encephalitis. The mosquito species Aedes aegypti and Aedes albopictus are the most frequent transmitters of alphaviruses. There are no effective vaccines or specific antivirals available for the treatment of alphavirus-related infections. Interestingly, changes in ion concentration in host cells have been characterized as critical regulators of the alphavirus life cycle, including fusion with the host cell, glycoprotein trafficking, genome translation, and viral budding. Cardiac glycosides, which are classical inhibitors of the Na+ K+ ATPase (NKA), can inhibit alphavirus replication although their mechanisms of action are poorly understood. Nonetheless, results from multiple studies suggest that inhibition of NKA may be a suitable strategy for the development of alphavirus-specific antiviral treatments. This review is aimed at exploring the role of changes in ion concentration during alphavirus replication and at considering the possibility of NKA as a potential therapeutic target for antiviral drugs.


Assuntos
Aedes/virologia , Infecções por Alphavirus/virologia , Alphavirus/fisiologia , Antivirais/uso terapêutico , Glicosídeos Cardíacos/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Humanos , Insetos Vetores/virologia , Íons/análise
12.
PLoS One ; 12(6): e0179654, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28628674

RESUMO

BACKGROUND: This study aimed to investigate the pathophysiology of hepatic microcirculatory dysfunction in non-alcoholic fatty liver disease (NAFLD). METHODS: In Wistar rats, NAFLD model was induced by 20 weeks of high-fat diet (HFD) feeding. Rolling and adhesion of leukocytes and tissue perfusion in hepatic microcirculation were examined using in vivo microscopic and laser speckle contrast imaging (LSCI), respectively. Oxidative stress and inflamatory parameters were analysed by TBARs, catalase enzyme activity, RT-PCR and ELISA. The participation of advanced glycation end-products (AGE) and its receptor RAGE was evaluated by the measurement of gene and protein expression of RAGE by RT-PCR and Western-blot, respectively and by liver and serum quantification of fluorescent AGEs. RESULTS: Wistar rats fed high-fat diet (HFD) showed increase in epididymal and abdominal fat content, systolic arterial blood pressure, fasting blood glucose levels, hepatic triglycerides and cholesterol, and impairment of glucose and insulin metabolisms. Liver histology confirmed the presence of steatosis and ultrasound analysis revealed increased liver size and parenchymal echogenicity in HFD-fed rats. HFD causes significant increases in leukocyte rolling and adhesion on hepatic microcirculation and decrease in liver microvascular blood flow. Liver tissue presented increase in oxidative stress and inflammtion. At 20 weeks, there was a significantly increase in AGE content in the liver and serum of HFD-fed rats and an increase in RAGE gene expression in the liver. CONCLUSION: The increase in liver AGE levels and microcirculatory disturbances could play a role in the pathogenesis of liver injury and are key components of NAFLD.


Assuntos
Produtos Finais de Glicação Avançada/análise , Fígado/metabolismo , Microcirculação/fisiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Glicemia/análise , Pressão Sanguínea/fisiologia , Catalase/análise , Catalase/genética , Catalase/metabolismo , Colesterol/sangue , Dieta Hiperlipídica , Interleucina-1beta/sangue , Leucócitos/citologia , Leucócitos/metabolismo , Fígado/irrigação sanguínea , Fígado/diagnóstico por imagem , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/sangue
13.
Shock ; 45(4): 393-403, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26618986

RESUMO

Dysregulation of the inflammatory response against infection contributes to mortality in sepsis. Inflammation provides critical host defense, but it can cause tissue damage, multiple organ failure, and death. Because the nuclear transcription factor peroxisome proliferator-activated receptor γ (PPARγ) exhibits therapeutic potential, we characterized the role of PPARγ in sepsis. We analyzed severity of clinical signs, survival rates, cytokine production, leukocyte influx, and bacterial clearance in a cecal ligation and puncture (CLP) model of sepsis in Swiss mice. The PPARγ agonist rosiglitazone treatment improved clinical status and mortality, while increasing IL-10 production and decreasing TNF-α and IL-6 levels, and peritoneal neutrophil accumulation 24 h after CLP. We noted increased bacterial killing in rosiglitazone treated mice, correlated with increased generation of reactive oxygen species. Polymorphonuclear leukocytes (PMN) incubated with LPS or Escherichia coli and rosiglitazone increased peritoneal neutrophil extracellular trap (NET)-mediated bacterial killing, an effect reversed by the PPARγ antagonist (GW 9662) treatment. Rosiglitazone also enhanced the release of histones by PMN, a surrogate marker of NET formation, effect abolished by GW 9662. Rosiglitazone modulated the inflammatory response and increased bacterial clearance through PPARγ activation and NET formation, combining immunomodulatory and host-dependent anti-bacterial effects and, therefore, warrants further study as a potential therapeutic agent in sepsis.


Assuntos
Escherichia coli/imunologia , Armadilhas Extracelulares/imunologia , Neutrófilos/imunologia , PPAR gama/agonistas , Sepse/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Anilidas/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , PPAR gama/imunologia , Rosiglitazona , Sepse/imunologia , Sepse/microbiologia , Sepse/patologia , Transdução de Sinais/imunologia
14.
Sci Rep ; 6: 34666, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27698491

RESUMO

The endotoxin lipopolysaccharide (LPS) promotes sepsis, but bacterial peptides also promote inflammation leading to sepsis. We found, intraperitoneal administration of live or heat inactivated E. coli JE5505 lacking the abundant outer membrane protein, Braun lipoprotein (BLP), was less toxic than E. coli DH5α possessing BLP in Swiss albino mice. Injection of BLP free of LPS purified from E. coli DH5α induced massive infiltration of leukocytes in lungs and liver. BLP activated human polymorphonuclear cells (PMNs) ex vivo to adhere to denatured collagen in serum and polymyxin B independent fashion, a property distinct from LPS. Both LPS and BLP stimulated the synthesis of platelet activating factor (PAF), a potent lipid mediator, in human PMNs. In mouse macrophage cell line, RAW264.7, while both BLP and LPS similarly upregulated TNF-α and IL-1ß mRNA; BLP was more potent in inducing cyclooxygenase-2 (COX-2) mRNA and protein expression. Peritoneal macrophages from TLR2-/- mice significantly reduced the production of TNF-α in response to BLP in contrast to macrophages from wild type mice. We conclude, BLP acting through TLR2, is a potent inducer of inflammation with a response profile both common and distinct from LPS. Hence, BLP mediated pathway may also be considered as an effective target against sepsis.


Assuntos
Proteínas da Membrana Bacteriana Externa/toxicidade , Endotoxemia/genética , Proteínas de Escherichia coli/toxicidade , Lipopolissacarídeos/toxicidade , Lipoproteínas/toxicidade , Animais , Adesão Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Endotoxemia/induzido quimicamente , Endotoxemia/imunologia , Endotoxemia/mortalidade , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Peroxidase/genética , Peroxidase/imunologia , Fator de Ativação de Plaquetas/genética , Fator de Ativação de Plaquetas/imunologia , Cultura Primária de Células , Células RAW 264.7 , Análise de Sobrevida , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
15.
Nat Commun ; 6: 6416, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25832730

RESUMO

Sphingosine-1-phosphate (S1P) participates in inflammation; however, its role in leukocyte rolling is still unclear. Here we use intravital microscopy in inflamed mouse cremaster muscle venules and human endothelial cells to show that S1P contributes to P-selectin-dependent leukocyte rolling through endothelial S1P receptor 3 (S1P3) and Gαq, PLCß and Ca(2+). Intra-arterial S1P administration increases leukocyte rolling, while S1P3 deficiency or inhibition dramatically reduces it. Mast cells involved in triggering rolling also release S1P that mobilizes P-selectin through S1P3. Histamine and epinephrine require S1P3 for full-scale effect accomplishing it by stimulating sphingosine kinase 1 (Sphk1). In a counter-regulatory manner, S1P1 inhibits cAMP-stimulated Sphk1 and blocks rolling as observed in endothelial-specific S1P1(-/-) mice. In agreement with a dominant pro-rolling effect of S1P3, FTY720 inhibits rolling in control and S1P1(-/-) but not in S1P3(-/-) mice. Our findings identify S1P as a direct and indirect contributor to leukocyte rolling and characterize the receptors mediating its action.


Assuntos
Endotélio Vascular/metabolismo , Migração e Rolagem de Leucócitos/genética , Selectina-P/metabolismo , Receptores de Lisoesfingolipídeo/genética , Animais , Cálcio/metabolismo , Epinefrina/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Histamina/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Lisofosfolipídeos/metabolismo , Masculino , Mastócitos/metabolismo , Camundongos , Camundongos Knockout , Músculo Esquelético/irrigação sanguínea , Fosfolipase C beta/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato , Vênulas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa