Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Pollut ; 336: 122406, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597731

RESUMO

Studies have shown that exposure to either microplastics (MPs) or di-(2-ethylhexyl) phthalic acid (DEHP) alone can cause neurotoxicity in animals, but it remains uncertain whether and to what extent co-exposure to these two substances, which often occur together in reality, can also induce neurotoxicity. This study aimed to investigate the neurotoxicity and molecular mechanisms of combined exposure to DEHP and polypropylene microplastics (synthetic PP-MPs were used), the microplastics most commonly encountered by young children, in immature mice. The results showed that exposure to PP-MPs and/or DEHP did cause neurotoxic effects in immature mice, including induction of neurocognitive and memory deficits, damage to the CA3 region of the hippocampus, increased oxidative stress, and decreased AChE activity in the brain. The severity of the neurotoxicity increased with increasing concentrations of PP-MPs, combined exposure to PP-MPs and DEHP exhibited additive or synergistic effects. Transcriptomic analyses revealed that the PP-MPs and/or DEHP exposure altered the expression profiles of gene clusters involved in the stress response, and in protein processing in endoplasmic reticulum. Quantitative analyses further indicated that PP-MPs and/or DEHP exposure inhibited the activity of the heat shock response mediated by heat shock transcription factor 1, while chronically activated the unfolded protein response, consequently inducing neurotoxicity through neuronal apoptosis and neuroinflammation in the immature mice. As a pioneer study to highlight the neurotoxicity induced by combined exposure to PP-MPs and DEHP in immature mice, this research provides new insights into mitigating the health risks of PP-MPs and DEHP exposure in young children.

2.
Environ Pollut ; 315: 120234, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36195197

RESUMO

Asthma is a respiratory disease that can be exacerbated by certain environmental factors. Both formaldehyde (FA) and PM2.5, the most common indoor and outdoor air pollutants in mainland China, are closely associated with the onset and development of asthma. To date, however, there is very little report available on whether there is an exacerbating effect of combined exposure to FA and PM2.5 at ambient concentrations. In this study, asthmatic mice were exposed to 1 mg/m3 FA, 1 mg/kg PM2.5, or a combination of 0.5 mg/m3 FA and 0.5 mg/kg PM2.5, respectively. Results demonstrated that both levels of oxidative stress and inflammation were significantly increased, accompanied by an obvious decline in lung function. Further, the initial activation of p38 MAPK and NF-κB that intensified the immune imbalance of asthmatic mice were found to be visibly mitigated following the administration of SB203580, a p38 MAPK inhibitor. Noteworthily, it was found that combined exposure to the two at ambient concentrations could significantly worsen asthma than exposure to each of the two alone at twice the ambient concentration. This suggests that combined exposure to formaldehyde and PM2.5 at ambient concentrations may have a synergistic effect, thus causing more severe damage in asthmatic mice. In general, this work has revealed that the combined exposure to FA and PM2.5 at ambient concentrations can synergistically aggravate asthma via the p38 MAPK pathway in mice.


Assuntos
Poluentes Atmosféricos , Asma , Camundongos , Animais , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Formaldeído/toxicidade , Asma/metabolismo , Inflamação/induzido quimicamente , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Material Particulado/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa