RESUMO
Pulmonary hypertension (PH) is a disease which affects the cardiopulmonary system; it is defined as a mean pulmonary artery pressure (mPAP) > 20 mmHg as measured by right heart catheterization at rest, and is caused by complex and diverse mechanisms. In response to stimuli such as hypoxia and ischemia, the expression and synthesis of endothelin (ET) increase, leading to the activation of various signaling pathways downstream of it and producing effects such as the induction of abnormal vascular proliferation during the development of the disease. This paper reviews the regulation of endothelin receptors and their pathways in normal physiological processes and disease processes, and describes the mechanistic roles of ET receptor antagonists that are currently approved and used in clinical studies. Current clinical researches on ET are focused on the development of multi-target combinations and novel delivery methods to improve efficacy and patient compliance while reducing side effects. In this review, future research directions and trends of ET targets are described, including monotherapy and precision medicine.
Assuntos
Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Receptores de Endotelina , Antagonistas dos Receptores de Endotelina/uso terapêutico , Antagonistas dos Receptores de Endotelina/farmacologia , Pulmão/metabolismo , Endotelinas/farmacologia , Endotelina-1RESUMO
Diabetic cardiomyopathy (DCM) is a critical complication of long-term chronic diabetes mellitus, and it is characterized by myocardial fibrosis and myocardial hypertrophy. Previous studies have shown that the pyroptosis pathway was significantly activated in DCM and may be related to the P2X7 receptor. However, the role of the P2X7 receptor in the development of DCM with pyroptosis is still unclear. In this study, we aimed to explore the mechanism of puerarin and whether the P2X7 receptor can be used as a new target for puerarin in the treatment of DCM. We adopted systematic pharmacology and bioinformatic approaches to identify the potential targets of puerarin for treating DCM. Additionally, we employed D-glucose-induced H9C2 rat cardiomyocytes and lipopolysaccharide-treated RAW264.7 mouse mononuclear macrophages as the in vitro model on DCM research, which is close to the pathological conditions. The mRNA expression of cytokines in H9C2 cells and RAW264.7 macrophages was detected. The protein expressions of NLRP3, N-GSDMD, cleaved-caspase-1, and the P2X7 receptor were investigated with Western blot analysis. Furthermore, molecular docking of puerarin and the P2X7 receptor was conducted based on CDOCKER. A total of 348 puerarin targets and 4556 diabetic cardiomyopathy targets were detected, of which 218 were cross targets. We demonstrated that puerarin is effective in enhancing cardiomyocyte viability and improving mitochondrial function. In addition, puerarin is efficacious in blocking NLRP3-Caspase-1-GSDMD-mediated pyroptosis in H9C2 cells and RAW264.7 cells, alleviating cellular inflammation. On the other hand, similar experimental results were obtained by intervention with the P2X7 receptor antagonist A740003, suggesting that the protective effects of puerarin are related to the P2X7 receptor. The molecular docking results indicated key binding activity between the P2X7 receptor and puerarin. These findings indicate that puerarin effectively regulated the pyroptosis signaling pathway during DCM, and this regulation was associated with the P2X7 receptor.
Assuntos
Cardiomiopatias Diabéticas , Miócitos Cardíacos , Camundongos , Animais , Ratos , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptores Purinérgicos P2X7/genética , Caspase 1 , Cardiomiopatias Diabéticas/tratamento farmacológico , Simulação de Acoplamento Molecular , MacrófagosRESUMO
CONTEXT: Dan-Shen Decoction, which is composed of Danshen, Tanxiang and Sharen, has a good therapeutic effect on ischemic heart disease (IHD). However, systematic research on the exact mechanism of action of Dan-Shen Decoction is still lacking. The anti-IHD effect of Dan-Shen Decoction was examined in this study using a systematic pharmacological method. OBJECTIVE: This study validates the efficacy and explores the potential mechanisms of Dan-Shen Decoction in treating IHD by integrating network pharmacology analyses and experimental verification. MATERIALS AND METHODS: The active components, critical targets and potential mechanisms of Dan-Shen Decoction against IHD were predicted by network pharmacology and molecule docking. H9c2 cells were pretreated with various 1 µg/mL Dan-Shen Decoction for 2 h before induction with 1000 µmol/L CoCl2 for 24 h. The cell viability was detected by CCK8, and protein expression was detected by western blots. RESULTS: The network pharmacology approach successfully identified 69 active components in Dan-Shen Decoction, and 122 potential targets involved in the treatment of IHD. The in vitro experiments indicate that the anti-IHD effect of Dan-Shen Decoction may be closely associated with targets such as AKT1 and MAPK1, as well as biological processes such as cell proliferation, inflammatory response, and metabolism. CONCLUSIONS: This study not only provides new insights into the mechanism of Dan-Shen Decoction against IHD, but also provides important information and new research ideas for the discovery of anti-IHD compounds from traditional Chinese medicine.
Assuntos
Medicamentos de Ervas Chinesas , Isquemia Miocárdica , Salvia miltiorrhiza , Humanos , Farmacologia em Rede , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Isquemia Miocárdica/tratamento farmacológico , Simulação de Acoplamento MolecularRESUMO
There is a new form of puerarin, puerarin-V, that has recently been developed, and it is unclear whether puerarin-V has a cardioprotective effect on diabetic cardiomyopathy (DCM). Here, we determined whether puerarin-V had any beneficial influence on the pathophysiology of DCM and explored its possible mechanisms. By injecting 30 mg/kg of STZ intraperitoneally, diabetes was induced in rats. After a week of stability, the rats were injected subcutaneously with ISO (5 mg/kg). We randomly assigned the rats to eight groups: (1) control; (2) model; (3) metformin; (4-6) puerarin-V at different doses; (7) puerarin (API); (8) puerarin injection. DCM rats were found to have severe cardiac insufficiency (arrythmia, decreased LVdP/dt, and increased E/A ratio). In addition, cardiac injury biomarkers (cTn-T, NT-proBNP, AST, LDH, and CK-MB), inflammatory cytokines (IL-1ß, IL-18, IL-6, and TNF-α), and oxidative damage markers (MDA, SOD and GSH) were markedly increased. Treatment with puerarin-V positively adjusts these parameters mentioned above by improving cardiac function and mitochondrial respiration, suppressing myocardial inflammation, and maintaining the structural integrity of the cardiac muscle. Moreover, treatment with puerarin-V inhibits the P2X7 receptor-mediated pyroptosis pathway that was upregulated in diabetic hearts. Given these results, the current study lends credence to the idea that puerarin-V can reduce myocardial damage in DCM rats. Furthermore, it was found that the effect of puerarin-V in diabetic cardiomyopathy is better than the API, the puerarin injection, and metformin. Collectively, our research provides a new therapeutic option for the treatment of DCM in clinic.
Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Metformina , Ratos , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Receptores Purinérgicos P2X7 , Piroptose , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Miocárdio , Respiração , Metformina/uso terapêuticoRESUMO
Heart failure (HF) is a clinical syndrome of cardiac insufficiency caused by abnormalities in cardiac structure and function that arise for various reasons, and it is the final stage of most cardiovascular diseases' progression. Total flavonoid extract from Dracocephalum moldavica L. (TFDM) has many pharmacological and biological roles, such as cardioprotective, neuroprotective, anti-atherogenic, antihypertensive, anti-diabetic, anti-inflammatory, antioxidant, etc. However, its effect on HF and its molecular mechanism are still unclear. In this study, we used systems pharmacology and an animal model of HF to investigate the cardioprotective effect of TFDM and its molecular mechanism. Eleven compounds in TFDM were obtained from the literature, and 114 overlapping genes related to TFDM and HF were collected from several databases. A PPI network and C-T network were established, and GO enrichment analysis and KEGG pathway analysis were performed. The top targets from the PPI network and C-T network were validated using molecular docking. The pharmacological activity was investigated in an HFpEF (heart failure with preserved ejection fraction) mouse model. This study shows that TFDM has a protective effect on HFpEF, and its protective mechanism may be related to the regulation of proinflammatory cytokines, apoptosis-related genes, fibrosis-related genes, etc. Collectively, this study offers new insights for researchers to understand the protective effect and mechanism of TFDM against HFpEF using a network pharmacology method and a murine model of HFpEF, which suggest that TFDM is a promising therapy for HFpEF in the clinic.
Assuntos
Insuficiência Cardíaca , Lamiaceae , Animais , Anti-Inflamatórios/metabolismo , Modelos Animais de Doenças , Flavonoides/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Insuficiência Cardíaca/metabolismo , Lamiaceae/química , Camundongos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Volume SistólicoRESUMO
Heart failure with preserved ejection fraction (HFpEF) is a morbid, fatal, and common syndrome for which lack of evidence-based therapies. Salvianolic acid A (SAA), a major active ingredient of Salvia miltiorrhiza Burge, has shown potential to protect against cardiovascular diseases. This study aims to elucidate whether SAA possessed therapeutic activity against HFpEF and explore the potential mechanism. HFpEF mouse model was established infusing a combination of high-fat diet (HFD) and Nω-nitro-L-arginine methyl ester (L-NAME) for 14 weeks. After 10 weeks of feeding, HFpEF mice were given SAA (2.5, 5, 10 mg/kg) via oral gavage for four weeks. Body weight, blood pressure, blood lipids, glucose tolerance, exercise performance, cardiac systolic/diastolic function, cardiac pathophysiological changes, and inflammatory factors were assessed. Experimental results showed that SAA reduced HFpEF risk factors, such as body weight gain, glucose intolerance, lipid disorders, and increased exercise tolerance in HFpEF mice. Moreover, SAA not only relieved myocardial hypertrophy and fibrosis by reducing interventricular septal wall thickness, left ventricular posterior wall thickness, left ventricular mass, heart index, cardiomyocyte cross-sectional area and cardiac collagen content, but also improved cardiac diastolic function via reducing E/E' ratio. Finally, SAA inhibited TLR2/TLR4-mediated Myd88 activation and its downstream molecules TRAF6 and IRAK4, which decreases the release of proinflammatory cytokines and mediators through NF-κB and p38 MAPK pathways. In conclusion, SAA could attenuate cardiac inflammation and cardiac disfunction by TLR/Myd88/TRAF/NF-κB and p38MAPK/CREB signaling pathways in HFpEF mice, which provides evidence for SAA as a potential drug for treatment of HFpEF in clinic.
Assuntos
Insuficiência Cardíaca , Animais , Camundongos , Peso Corporal , Insuficiência Cardíaca/tratamento farmacológico , Fator 88 de Diferenciação Mieloide , Miócitos Cardíacos , NF-kappa B/uso terapêutico , Transdução de Sinais , Volume Sistólico/fisiologiaRESUMO
Salvianolic acid A (SAA) is a traditional Chinese medicine that has a good therapeutic effect on cardiovascular disease. However, the underlying mechanisms by which SAA improves mitochondrial respiration and cardiac function in diabetic cardiomyopathy (DCM) remain unknown. This study aims to elucidate whether SAA had any cardiovascular protection on the pathophysiology of DCM and explored the potential mechanisms. Diabetes was induced in rats by 30 mg/kg of streptozotocin (STZ) treatment. After a week of stability, 5 mg/kg isoprenaline (ISO) was injected into the rats subcutaneously. 3 mg/kg SAA was orally administered for six weeks and 150 mg/kg Metformin was selected as a positive group. At the end of this period, cardiac function was assessed by ultrasound, electrocardiogram, and relevant cardiac injury biomarkers testing. Treatment with SAA improved cardiac function, glucose, and lipid levels, mitochondrial respiration, and suppressed myocardial inflammation and apoptosis. Furthermore, SAA treatment inhibits the apoptosis pathway through CRYAB in diabetic cardiomyopathy rats. As a result, this study not only provides new insights into the mechanism of SAA against DCM but also provides new therapeutic ideas for the discovery of anti-DCM compounds in the clinic.
Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Animais , Ratos , Apoptose , Cardiomiopatias Diabéticas/metabolismo , Ratos Sprague-Dawley , Respiração , CoraçãoRESUMO
Branching morphogenesis is a fundamental process by which organs in invertebrates and vertebrates form branches to expand their surface areas. The current dogma holds that directional cell migration determines where a new branch forms and thus patterns branching. Here, we asked whether mouse Lgl1, a homolog of the Drosophila tumor suppressor Lgl, regulates epithelial polarity in the mammary gland. Surprisingly, mammary glands lacking Lgl1 have normal epithelial polarity, but they form fewer branches. Moreover, we find that Lgl1 null epithelium is unable to directionally migrate, suggesting that migration is not essential for mammary epithelial branching as expected. We show that LGL1 binds to Integrin ß1 and inhibits its downstream signaling, and Integrin ß1 overexpression blocks epithelial migration, thus recapitulating the Lgl1 null phenotype. Altogether, we demonstrate that Lgl1 modulation of Integrin ß1 signaling is essential for directional migration and that epithelial branching in invertebrates and the mammary gland is fundamentally distinct.