Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 442(2): 114269, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39389335

RESUMO

Colorectal cancer (CRC) is the third deadliest cancer in the world, with a high incidence, aggressiveness, poor prognosis, and resistant to drugs. 5-fluorouracil (5-FU) is the most commonly used drug for the chemotherapeutic of CRC, however, CRC is resistant to 5-FU after a period of treatment. Therefore, there is an urgent need to explore the underlying molecular mechanisms of CRC resistance to 5-FU. In the present study, we found that the expression of PANX2 was increased in CRC tissues and metastatic tissues from the TCGA database. The K-M survival curve showed that the high expression of PANX2 was associated with poor cancer prognosis. GDSC database showed that the IC50 of 5-Fu in the PANX2 high expression group was significantly higher, and the results were verified in CRC cells. In vitro cell function and in vivo tumorigenesis experiments showed that PANX2 promoted CRC cell proliferation, clone formation, migration and tumorigenesis in vivo. WB result revealed that PANX2 may lead to resistance to 5-Fu in CRC by affecting the PI3K-AKT signaling pathway. Overall, PANX2 regulates CRC proliferation, clone formation, migration, and 5-Fu resistance by PI3K-AKT signaling pathway.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Conexinas , Resistencia a Medicamentos Antineoplásicos , Fluoruracila , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fluoruracila/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Animais , Conexinas/metabolismo , Conexinas/genética , Camundongos , Camundongos Nus , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/efeitos dos fármacos , Prognóstico , Feminino , Masculino , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Cell Mol Med ; 28(9): e18374, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38722288

RESUMO

The majority of advanced breast cancers exhibit strong aggressiveness, heterogeneity, and drug resistance, and currently, the lack of effective treatment strategies is one of the main challenges that cancer research must face. Therefore, developing a feasible preclinical model to explore tailored treatments for refractory breast cancer is urgently needed. We established organoid biobanks from 17 patients with breast cancer and characterized them by immunohistochemistry (IHC) and next generation sequencing (NGS). In addition, we in the first combination of patient-derived organoids (PDOs) with mini-patient-derived xenografts (Mini-PDXs) for the rapid and precise screening of drug sensitivity. We confirmed that breast cancer organoids are a high-fidelity three-dimension (3D) model in vitro that recapitulates the original tumour's histological and genetic features. In addition, for a heavily pretreated patient with advanced drug-resistant breast cancer, we combined PDO and Mini-PDX models to identify potentially effective combinations of therapeutic agents for this patient who were alpelisib + fulvestrant. In the drug sensitivity experiment of organoids, we observed changes in the PI3K/AKT/mTOR signalling axis and oestrogen receptor (ER) protein expression levels, which further verified the reliability of the screening results. Our study demonstrates that the PDO combined with mini-PDX model offers a rapid and precise drug screening platform that holds promise for personalized medicine, improving patient outcomes and addressing the urgent need for effective therapies in advanced breast cancer.


Assuntos
Neoplasias da Mama , Organoides , Medicina de Precisão , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Organoides/efeitos dos fármacos , Organoides/patologia , Organoides/metabolismo , Medicina de Precisão/métodos , Animais , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Pessoa de Meia-Idade
3.
Cancer Immunol Immunother ; 73(7): 127, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739169

RESUMO

Lactate dehydrogenase B (LDHB) reversibly catalyzes the conversion of pyruvate to lactate or lactate to pyruvate and expressed in various malignancies. However, the role of LDHB in modulating immune responses against hepatocellular carcinoma (HCC) remains largely unknown. Here, we found that down-regulation of lactate dehydrogenase B (LDHB) was coupled with the promoter hypermethylation and knocking down the DNA methyltransferase 3A (DNMT 3A) restored LDHB expression levels in HCC cell lines. Bioinformatics analysis of the HCC cohort from The Cancer Genome Atlas revealed a significant positive correlation between LDHB expression and immune regulatory signaling pathways and immune cell infiltrations. Moreover, immune checkpoint inhibitors (ICIs) have shown considerable promise for HCC treatment and patients with higher LDHB expression responded better to ICIs. Finally, we found that overexpression of LDHB suppressed HCC growth in immunocompetent but not in immunodeficient mice, suggesting that the host immune system was involved in the LDHB-medicated tumor suppression. Our findings indicate that DNMT3A-mediated epigenetic silencing of LDHB may contribute to HCC progression through remodeling the tumor immune microenvironment, and LDHB may become a potential prognostic biomarker and therapeutic target for HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular , DNA Metiltransferase 3A , Epigênese Genética , L-Lactato Desidrogenase , Neoplasias Hepáticas , Microambiente Tumoral , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral/imunologia , Humanos , Animais , Camundongos , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , DNA Metiltransferase 3A/metabolismo , Regulação Neoplásica da Expressão Gênica , Metilação de DNA , Isoenzimas/genética , Isoenzimas/metabolismo , Linhagem Celular Tumoral , Inativação Gênica , Prognóstico
4.
Small ; 20(43): e2403993, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39031746

RESUMO

Polyvinylidene fluoride (PVDF) has unique electrochemical oxidation resistance and is the only binder for high-voltage cathode materials in the battery industry for a long time. However, PVDF still has some drawbacks, such as environmental limitations on fluorine, strict requirements for environmental humidity, weak adhesion, and poor lithium ion conductivity. Herein, the long-standing issues associated with high-voltage lithium cobalt oxide (LiCoO2; LCO) are successfully addressed by incorporating phenolphthalein polyetherketone (PEK-C) and phenolphthalein polyethersulfone (PES-C) as binder materials. These binders have unexpected electrochemical oxidation resistance and robustness adhesion, ensure uniform coverage on the surface of LCO, and establish an effective and fast ion-conductive CEI/binder composite layer. By leveraging these favorable characteristics, electrodes based on polyarylether binders demonstrate significantly better cycling and rate performance than their counterparts using traditional PVDF binders. The fast ion-conductive CEI/binder composite layer effectively mitigates adverse reactions at the cathode-electrolyte interface. As anticipated, batteries utilizing phenolphthalein polyarylether binders exhibit capacity retention rates of 88.92% and 80.4% after 200 and 500 cycles at 4.5 and 4.6 V, respectively. The application of binders, such as polyarylether binders, offers a straightforward and inspiring approach for designing high-energy-density battery materials.

5.
Ann Surg Oncol ; 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39480603

RESUMO

BACKGROUND: Liver metastasis impacts survival in patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs); however, current guidelines lack consensus on post-resection surveillance and adjuvant therapy. A comprehensive risk stratification tool is needed to guide personalized management. OBJECTIVE: We aimed to develop and validate a predictive model for liver metastasis risk after surgical resection of GEP-NETs that incorporates pathological factors and adjuvant therapy. METHODS: Patients with GEP-NETs who underwent surgical resection with curative intent at three major Chinese hospitals (2010-2022) were identified. Univariable and multivariable Cox regression analysis identified independent risk factors of liver metastasis. The liver metastasis score (LMS) was developed using weighted risk factors and validated by tenfold cross-validation. RESULTS: Among the 724 patients included in the analytic cohort, liver metastasis occurred in 66 patients (9.1%) at a median of 36 months; patients with liver metastasis had a worse 5-year overall survival (no liver metastasis 63.6% vs. liver metastasis 95.8%; p < 0.001). Independent predictors were Ki-67 index (hazard ratio [HR] 10.36 for Ki-67 3-20%, HR 18.30 for Ki-67 >20%, vs. <3%), vascular invasion (HR 5.03), lymph node metastases (HR 2.24), and lack of adjuvant therapy (HR 3.03). The LMS demonstrated excellent discrimination (C-index 0.888) and stratified patients into low, intermediate, and high-risk relative to 5-year risk of liver metastasis: 2.9%, 20.8%, and 49.7%, respectively (p < 0.001). CONCLUSIONS: The novel LMS effectively predicted the risk of liver metastasis after surgical resection of GEP-NETs. This validated model can help guide personalized surveillance and adjuvant treatment strategies, potentially improving outcomes for high-risk patients.

6.
Virol J ; 21(1): 266, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39468659

RESUMO

BACKGROUND: The metabolomic profiles of individuals with different clinical manifestations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have not been clearly characterized. METHODS: We performed metabolomics analysis of 166 individuals, including 62 healthy controls, 16 individuals with asymptomatic SARS-CoV-2 infection, and 88 patients with moderate (n = 42) and severe (n = 46) symptomatic 2019 coronavirus disease (COVID-19; 17 with short-term and 34 with long-term nucleic-acid test positivity). By examining differential expression, we identified candidate metabolites associated with different SARS-CoV-2 infection presentations. Functional and machine learning analyses were performed to explore the metabolites' functions and verify their candidacy as biomarkers. RESULTS: A total of 417 metabolites were detected. We discovered 70 differentially expressed metabolites that may help differentiate asymptomatic infections from healthy controls and COVID-19 patients with different disease severity. Cyclamic acid and N-Acetylneuraminic Acid were identified to distinguish symptomatic infected patients and asymptomatic infected patients. Shikimic Acid, Glycyrrhetinic acid and 3-Hydroxybutyrate can supply significant insights for distinguishing short-term and long-term nucleic-acid test positivity. CONCLUSION: Metabolomic profiling may highlight novel biomarkers for the identification of individuals with asymptomatic SARS-CoV-2 infection and further our understanding of the molecular pathogenesis of COVID-19.


Assuntos
Biomarcadores , COVID-19 , Metabolômica , SARS-CoV-2 , Humanos , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/virologia , Masculino , Feminino , Metabolômica/métodos , Pessoa de Meia-Idade , Adulto , Biomarcadores/sangue , Metaboloma , Idoso , Índice de Gravidade de Doença , Ácido N-Acetilneuramínico/sangue , Infecções Assintomáticas
7.
Biotechnol Bioeng ; 121(7): 2163-2174, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38595326

RESUMO

Pathogenic bacterial membrane proteins (MPs) are a class of vaccine and antibiotic development targets with widespread clinical application. However, the inherent hydrophobicity of MPs poses a challenge to fold correctly in living cells. Herein, we present a comprehensive method to improve the soluble form of MP antigen by rationally designing multi-epitope chimeric antigen (ChA) and screening two classes of protein-assisting folding element. The study uses a homologous protein antigen as a functional scaffold to generate a ChA possessing four epitopes from transferrin-binding protein A of Glaesserella parasuis. Our engineered strain, which co-expresses P17 tagged-ChA and endogenous chaperones groEL-ES, yields a 0.346 g/L highly soluble ChA with the property of HPS-positive serum reaction. Moreover, the protein titer of ChA reaches 4.27 g/L with >90% soluble proportion in 5-L bioreactor, which is the highest titer reported so far. The results highlight a timely approach to design and improve the soluble expression of MP antigen in industrially viable applications.


Assuntos
Antígenos de Bactérias , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Reatores Biológicos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Escherichia coli/genética , Escherichia coli/metabolismo , Clostridiales/genética , Clostridiales/metabolismo , Solubilidade
8.
Pediatr Res ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39179877

RESUMO

BACKGROUND: We aimed to explore the differences and relationships in body composition, social function, and comorbidities between children with attention-deficit/hyperactivity disorder (ADHD) and subthreshold ADHD. METHODS: A case-control study was conducted to analyze the differences between children with ADHD and subthreshold ADHD. Logistic regression models were used to analyze the factors influencing social functional impairments and comorbidities. RESULTS: Children with ADHD and subthreshold ADHD had a higher fat mass index than healthy children (p < 0.05). The scores of all six social functional domains were higher in the subthreshold ADHD and ADHD groups than in the control group (p < 0.05). The prevalence of comorbidity was higher in children with subthreshold ADHD and ADHD compared to the control group (p < 0.05). Inattention and comorbid anxiety/depression increased the risk of functional impairments in children with ADHD (full syndrome/subthreshold), whereas a higher fat-free mass index reduced the risk. The severity of hyperactivity was associated with a higher risk of comorbidity in children with ADHD (full syndrome/subthreshold). CONCLUSION: Children with subthreshold ADHD and ADHD had more fat mass and higher rates of social functional impairments and comorbidities than healthy children. There were clinical correlations between body composition, social functional impairments, and comorbidities in ADHD. IMPACT: 1. Children with subthreshold ADHD and ADHD had higher fat mass levels than normal children. 2. The social function impairments and comorbidities of children with subthreshold ADHD were similar to those with ADHD. 3. Inattentiveness and anxiety/depression increased the risk of functional impairments in children with ADHD (full syndrome/subthreshold), while a higher fat-free mass index and skeletal muscle-to-body fat ratio reduced the risk.

9.
J Biochem Mol Toxicol ; 38(11): e70002, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39415664

RESUMO

The purpose of this study was to investigate the mechanism of EMP1 action in high glucose (HG)-induced H9c2 cardiac cell pyroptosis and oxidative injury. Rat cardiomyocytes H9c2 were exposed to 33 mM glucose for 24, 48, or 72 h to induce cytotoxicity. EMP1-siRNA, NLRP3 agonist Nigericin, and pcNDA-RAS were used to treat H9c2 cells under HG conditions. Cell Counting Kit (CCK)-8 assay showed that cell proliferation was decreased following HG induction, which was rescued by EMP1 knockdown. Our results also suggested that EMP1 siRNA transfection significantly decreased the apoptosis and pyroptosis of HG-induced cells, as indicated by the reduction of NLRP3 IL-1ß, ASC, GSDMD, cleaved-caspase1 and cleaved-caspase3 levels in HG-induced H9c2 cells. In addition, EMP1 knockdown alleviated HG-induced mitochondrial damage and oxidative stress in H9c2 cells. NLRP3 activation reversed the inhibitory effects of EMP1 knockdown on pyroptosis and oxidative stress in HG-induced H9c2 cells. Mechanistically, we found that EMP1 knockdown suppressed the RAS/RAF/MAPK signaling pathway in HG-induced H9c2 cells. RAS overexpression blocked the protective effect of EMP1 knockdown on HG-induced H9c2 cell apoptosis, pyroptosis, and oxidative injury. Our findings suggest that EMP1 knockdown treatment might provide a novel therapy for diabetic cardiomyopathy.


Assuntos
Técnicas de Silenciamento de Genes , Glucose , Sistema de Sinalização das MAP Quinases , Miócitos Cardíacos , Estresse Oxidativo , Piroptose , Animais , Piroptose/efeitos dos fármacos , Ratos , Estresse Oxidativo/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Glucose/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Linhagem Celular , Proteínas ras/metabolismo , Proteínas ras/genética
10.
Appl Microbiol Biotechnol ; 108(1): 54, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38175240

RESUMO

Hyaluronidases catalyze the degradation of hyaluronan (HA), which is finding rising applications in medicine, cosmetic, and food industries. Recombinant expression of hyaluronidases in microbial hosts has been given special attention as a sustainable way to substitute animal tissue-derived hyaluronidases. In this study, we focused on optimizing the secretion of hyaluronidase from Homo sapiens in Pichia pastoris by secretion pathway engineering. The recombinant hyaluronidase was first expressed under the control of a constitutive promoter PGCW14. Then, two endoplasmic reticulum-related secretory pathways were engineered to improve the secretion capability of the recombinant strain. Signal peptide optimization suggested redirecting the protein into co-translational translocation using the ost1-proα signal sequence improved the secretion level by 20%. Enhancing the co-translational translocation by overexpressing signal recognition particle components further enhanced the secretory capability by 48%. Then, activating the unfolded protein response by overexpressing a transcriptional factor ScHac1p led to a secreted hyaluronidase activity of 4.06 U/mL, which was 2.1-fold higher than the original strain. Finally, fed-batch fermentation elevated the production to 19.82 U/mL. The combined engineering strategy described here could be applied to enhance the secretion capability of other proteins in yeast hosts. KEY POINTS: • Improving protein secretion by enhancing co-translational translocation in P. pastoris was reported for the first time. • Overexpressing Hac1p homologous from different origins improved the rhPH-20 secretion. • A 4.9-fold increase in rhPH-20 secretion was achieved after fermentation optimization and fed-batch fermentation.


Assuntos
Hialuronoglucosaminidase , Resposta a Proteínas não Dobradas , Animais , Humanos , Hialuronoglucosaminidase/genética , Transporte Proteico , Retículo Endoplasmático
11.
Mol Pain ; 19: 17448069231179118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37347150

RESUMO

BACKGROUND: Irritable bowel syndrome (IBS) is one of the typical representatives of chronic functional visceral pain that lacks effective treatment. Recently, attention has been given to the role of microglia in IBS, particularly the activation of spinal microglia and the subsequent release of Cathepsin S (Cat S), a proteolytic enzyme. However, the specific role of spinal Cat S in IBS remains to be elucidated. The purpose of this study is to investigate the mechanisms underlying the regulation of visceral hypersensitivity in IBS-like rats by Cat S. METHODS: An IBS-like rat model was developed, and visceral sensitivity was tested via the electromyographic (EMG) response to colorectal distention (CRD) and pain threshold. Western blot and immunofluorescence were used to examine the expressions of proteins. The effects of inhibitors or neutralizing antibodies on visceral pain and the downstream molecular expressions were detected. The open-field test was performed to evaluate locomotor activity and anxiety-like behaviors in rats. RESULTS: We discovered that spinal Cat S was upregulated and colocalized with microglia in IBS-like rats. Treatment with LY3000328, a selective inhibitor of Cat S, dose-dependently down-regulated EMG amplitude and Fractalkine (FKN) expression, indicating that Cat S regulated visceral hypersensitivity via activating FKN in IBS-like rats. Furthermore, the expressions of FKN, CX3CR1, and p-p38 MAPK were elevated in IBS-like rats whereas inhibition of these molecules could alleviate visceral pain. Moreover, pharmacological inhibitor experiments suggested the activation of CX3CR1 by FKN facilitated p38 MAPK phosphorylation, which in turn promoted Cat S expression in IBS-like rats. CONCLUSIONS: Neonatal adverse stimulation might enhance the expression of spinal microglial Cat S, thereby activating the FKN/CX3CR1/p38 MAPK pathway and lead to visceral hypersensitivity in IBS-like rats. As a selective inhibitor of Cat S, LY3000328 could become a potential therapeutic option for IBS.


Assuntos
Dor Crônica , Síndrome do Intestino Irritável , Dor Visceral , Ratos , Animais , Dor Visceral/tratamento farmacológico , Quimiocina CX3CL1/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Modelos Animais de Doenças , Receptor 1 de Quimiocina CX3C/metabolismo
12.
Metab Eng ; 78: 99-114, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37244368

RESUMO

Solubility and folding stability are key concerns for difficult-to-express proteins (DEPs) restricted by amino acid sequences and superarchitecture, resolved by the precise distribution of amino acids and molecular interactions as well as the assistance of the expression system. Therefore, an increasing number of tools are available to achieve efficient expression of DEPs, including directed evolution, solubilization partners, chaperones, and affluent expression hosts, among others. Furthermore, genome editing tools, such as transposons and CRISPR Cas9/dCas9, have been developed and expanded to construct engineered expression hosts capable of efficient expression ability of soluble proteins. Accounting for the accumulated knowledge of the pivotal factors in the solubility and folding stability of proteins, this review focuses on advanced technologies and tools of protein engineering, protein quality control systems, and the redesign of expression platforms in prokaryotic expression systems, as well as advances of the cell-free expression technologies for membrane proteins production.


Assuntos
Sistemas CRISPR-Cas , Biologia Sintética , Edição de Genes , Engenharia de Proteínas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
13.
Am J Pathol ; 192(2): 332-343, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35144761

RESUMO

Dry eye disease (DED) features the inflammatory response of the ocular surface. Pro-inflammatory T helper 17 (Th17) cells are important for the pathogenesis of DED. In the present study a mouse DED model was used to discover two Th17 subsets in draining lymph nodes and conjunctivae based on the expression of IL-17 receptor E (IL-17RE) and CCR10: IL-17RElowCCR10- Th17 and IL-17REhighCCR10+ Th17. IL-17REhighCCR10+ Th17 expressed more retinoic acid-related orphan receptor gamma t but fewer T-box-expressed-in-T-cells than IL-17RElowCCR10- Th17. In addition, the former expressed higher IL-17A, IL-21, and IL-22 but fewer IFN-γ than the latter. Further analysis showed that IL-17REhighCCR10+ Th17 did not express IFN-γ in vivo, whereas IL-17RElowCCR10- Th17 contained IFN-γ-expressing Th17/Th1 cells. Moreover, IL-17REhighCCR10+ Th17 possessed more phosphorylated p38 mitogen-activated protein kinase (MAPK) and Jnk than IL-17RElowCCR10- Th17, suggesting higher activation of MAPK signaling in IL-17REhighCCR10+ Th17. In vitro treatment with IL-17C effectively maintained IL-17A expression in Th17 cells through p38 MAPK rather than Jnk MAPK. Furthermore, the adoptive transfer of the two Th17 subpopulations indicated their equivalent pathogenicity in DED. Interestingly, IL-17REhighCCR10+ Th17 cells were able to phenotypically polarize to IL-17RElowCCR10- Th17 cells in vivo. In conclusion, the current study revealed novel Th17 subsets with differential phenotypes, functions, and signaling status in DED, thus deepening the understanding of Th17 pathogenicity, and exhibited Th17 heterogeneity in DED.


Assuntos
Síndromes do Olho Seco/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Receptores CCR10/imunologia , Receptores de Interleucina-17/imunologia , Células Th17/imunologia , Animais , Modelos Animais de Doenças , Síndromes do Olho Seco/genética , Síndromes do Olho Seco/patologia , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Transgênicos , Receptores CCR10/genética , Receptores de Interleucina-17/genética , Células Th17/patologia
14.
Appl Environ Microbiol ; 89(6): e0022023, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37191513

RESUMO

Nitrilase can catalyze nitrile compounds to generate corresponding carboxylic acids. Nitrilases as promiscuous enzymes can catalyze a variety of nitrile substrates, such as aliphatic nitriles, aromatic nitriles, etc. However, researchers tend to prefer enzymes with high substrate specificity and high catalytic efficiency. In this study, we developed an active pocket remodeling (ALF-scanning) based on modulating the geometry of the nitrilase active pocket to alter substrate preference and improve catalytic efficiency. Using this strategy, combined with site-directed saturation mutagenesis, we successfully obtained 4 mutants with strong aromatic nitrile preference and high catalytic activity, W170G, V198L, M197F, and F202M, respectively. To explore the synergistic relationship of these 4 mutations, we constructed 6 double-combination mutants and 4 triple-combination mutants. By combining mutations, we obtained the synergistically enhanced mutant V198L/W170G, which has a significant preference for aromatic nitrile substrates. Compared with the wild type, its specific activities for 4 aromatic nitrile substrates are increased to 11.10-, 12.10-, 26.25-, and 2.55-fold, respectively. By mechanistic dissection, we found that V198L/W170G introduced a stronger substrate-residue π-alkyl interaction in the active pocket and obtained a larger substrate cavity (225.66 Å3 to 307.58 Å3), making aromatic nitrile substrates more accessible to be catalyzed by the active center. Finally, we conducted experiments to rationally design the substrate preference of 3 other nitrilases based on the substrate preference mechanism and also obtained the corresponding aromatic nitrile substrate preference mutants of these three nitrilases and these mutants with greatly improved catalytic efficiency. Notably, the substrate range of SmNit is widened. IMPORTANCE In this study, the active pocket was largely remodeled based on the ALF-scanning strategy we developed. It is believed that ALF-scanning not only could be employed for substrate preference modification but might also play a role in protein engineering of other enzymatic properties, such as substrate region selectivity and substrate spectrum. In addition, the mechanism of aromatic nitrile substrate adaptation we found is widely applicable to other nitrilases in nature. To a large extent, it could provide a theoretical basis for the rational design of other industrial enzymes.


Assuntos
Aminoidrolases , Nitrilas , Aminoidrolases/genética , Aminoidrolases/metabolismo , Catálise , Engenharia de Proteínas , Especificidade por Substrato
15.
Microb Pathog ; 181: 106176, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37244492

RESUMO

Aeromonas veronii (A. veronii), a highly pathogenic bacteria with a wide range of hosts, widely exists in the environment of humans, animals and aquatic animals, and can cause a variety of diseases. In this study, the receptor regulator ompR in the envZ/ompR of two-component system was selected to construct a mutant strain (Δ ompR) and a complement strain (C-ompR) to explore the regulatory effect of ompR on the biological characteristics and virulence of TH0426. The results showed that the ability of biofilm formation and osmotic stress of TH0426 were significantly reduced (P < 0.001), the resistance to ceftriaxone and neomycin were slightly down-regulate when the ompR gene was deleted. At the same time, animal pathogenicity experiments showed that the virulence of TH0426 was significantly down-regulated (P < 0.001). These results indicated that ompR gene regulates the biofilm formation of TH0426, and regulates some biological characteristics of TH0426, including drug sensitivity, resistance to osmotic stress, and also affects its virulence.


Assuntos
Aeromonas veronii , Biofilmes , Animais , Humanos , Aeromonas veronii/genética , Virulência/genética , Agregação Celular , Resistência a Medicamentos , Proteínas de Bactérias/genética
16.
J Interv Cardiol ; 2023: 8670365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601238

RESUMO

Objective: To evaluate the safety and efficacy of adrenal venous sampling (AVS) via the cubital vein and femoral vein synchronously. Methods: A total of 200 patients with primary aldosteronism admitted to the First Hospital of Fujian Medical University were enrolled and randomly divided into a single-path AVS group (SP, N = 108) and a multipath AVS group (MP, N = 92). We analyzed the clinical characteristics, intubation success rate, procedure cost, total fluoroscopy time, complications, contrast dosage, and the number of catheters selected during AVS. A planar quadrant system was established to mark the direction of the adrenal opening, with the intersection of the right renal vein and the inferior vena cava defined as the origin. In digital subtraction angiography images, the RAV opening located in the 0-3 o'clock direction was the first quadrant (I), and the 3-6 o'clock direction was the third quadrant (III). Results: There was no statistical difference between the two groups at baseline. Multipath AVS had a significantly higher success rate of right-sided intubation than single-path AVS (success rate of right-sided intubation/%: SP 87.96 vs MP 95.65, P = 0.043). Total fluoroscopy time was significantly reduced (fluoroscopy time/min: SP 9.80 ± 4.07 vs MP 7.42 ± 3.48, P = 0.024) and the cost of the procedure was markedly lower (cost/yuan: SP 3,900.93 ± 1,191.12 vs MP 3,378.26 ± 399.40, P < 0.001). There was no significant difference in postoperative complications between the two groups. In the group I, the procedure was completed mainly with an MPA catheter (catheter selection/%: MPA 98.19 vs TIG 17.65, P < 0.001). In the group III, TIG catheters were used more frequently (catheter selection/%: MPA 1.81 vs TIG 82.35, P < 0.001). Conclusion: Multipath AVS via the cubital vein and femoral vein improves the success rate of AVS with comparable safety compared to single-path AVS. When the RAV is opened in the III quadrant, the TIG catheter improves the cannulation success rate. The multipath AVS method provides more catheter options. Patients diagnosed with PA at the First Hospital of Fujian Medical University from December 2019 to December 2021 were included. The collection of medical records of the included population was approved by the ethics committee (approval number: [2021] 311). This was a cross-sectional study in which some patients were treated surgically and some were treated with superselective adrenal artery embolization (SAAE). We conducted a cohort study of patients treated with SAAE. ClinicalTrials.gov Protocol Registration and Results System (PRS) receipt release date: January 11, 2022. This trial is registered with NCT05188872.


Assuntos
Hiperaldosteronismo , Procedimentos Cirúrgicos Vasculares , Humanos , Estudos de Coortes , Estudos Transversais , Catéteres , Hiperaldosteronismo/diagnóstico , Hiperaldosteronismo/cirurgia
17.
Crit Rev Food Sci Nutr ; 63(21): 5268-5289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34907819

RESUMO

Collagen is a kind of high macromolecular protein with unique tissue distribution and distinctive functions in the body. At present, most collagen products are extracted from the tissues and organs of mammals or marine fish. However, this method exhibits several disadvantages, including low efficiency and serious waste generation, which makes it difficult to meet the current market demand. With the rapid development of synthetic biology and the deepening of high-density fermentation technology, the collagen preparation by biosynthesis strategy emerges as the times require. Co-expression with the proline hydroxylase gene can solve the problem of non-hydroxylated collagen, but the yield may be affected. Therefore, improving the expression through molecular modification and dynamic regulation of synthesis is an entry point for future research. Due to the defects in certain properties of the natural collagen, modification of properties would be benefit for meeting the requirements of practical application. In this paper, in-depth investigations on recombinant expression, fermentation, and modification studies of collagen are conducted. Also, it summarizes the research progress of collagen in food, medicine, and beauty industry in recent years. Furthermore, the future development trend and application prospect of collagen are discussed, which would provide guidance for its preparation and application.


Assuntos
Colágeno , Mamíferos , Animais , Fermentação , Colágeno/genética , Mamíferos/metabolismo
18.
Appl Microbiol Biotechnol ; 107(15): 4759-4775, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37347262

RESUMO

Nicotinamide mononucleotide (NMN), a naturally occurring biologically active nucleotide, mainly functions via mediating the biosynthesis of NAD+. In recent years, its excellent pharmacological activities including anti-aging, treating neurodegenerative diseases, and protecting the heart have attracted increasing attention from scholars and entrepreneurs for production of a wide range of formulations, including functional food ingredients, health care products, active pharmaceuticals, and pharmaceutical intermediates. Presently, the synthesis methods of NMN mainly include two categories: chemical synthesis and biosynthesis. With the development of biocatalyst engineering and synthetic biology strategies, bio-preparation has proven to be efficient, economical, and sustainable methods. This review summarizes the chemical synthesis and biosynthetic pathways of NMN and provides an in-depth investigation on the mining and modification of enzyme resources during NMN biosynthesis, as well as the screening of hosts and optimization of chassis cells via metabolic engineering, which provide effective strategies for efficient production of NMN. In addition, an overview of the significant physiological functions and activities of NMN is elaborated. Finally, future research on technical approaches to further enhance NMN synthesis and strengthen clinical studies of NMN are prospected, which would lay the foundation for further promoting the application of NMN in nutrition, healthy food, and medicine in the future. KEY POINTS: • NMN supplementation effectively increases the level of NAD+. • The chemical and biological synthesis of NMN are comprehensively reviewed. • The impact of NMN on the treatment of various diseases is summarized.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Humanos , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Mononucleotídeo de Nicotinamida/uso terapêutico , NAD/metabolismo , Envelhecimento , Tecnologia
19.
BMC Pediatr ; 23(1): 358, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37442965

RESUMO

BACKGROUND: We aimed to analyze the characteristics of the body composition of children and adolescents aged 3-17 in Suzhou, China. METHODS: A cross-sectional study between January 2020 and June 2022 using bioelectrical impedance was conducted to determine the fat mass (FM), fat-free mass (FFM), skeletal muscle mass, and protein and mineral contents of 24,845 children aged 3-17 who attended the Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, China. Measurement data was presented in tables as mean ± SD, and groups were compared using the independent samples t-test. RESULTS: FM and fat-free mass increased with age in both boys and girls. The fat-free mass of girls aged 14-15 decreased after reaching a peak, and that of boys in the same age group was higher than that of the girls (p < 0.05). There were no significant differences in FM between boys and girls younger than 9- and 10-years old. The percentage body fat (PBF) and FM index of girls increased rapidly between 11 and 15 years of age (p < 0.05), and those of boys aged 11-14 were significantly lower (p < 0.05), suggesting that the increase in body mass index (BMI) was mainly contributed by muscle mass (MM) in boys. CONCLUSIONS: The body composition of children and adolescents varies according to their age and sex. A misdiagnosis of obesity made on the basis of BMI alone can be avoided if BMI is used in combination with FM index, percentage body fat, and other indexes.


Assuntos
Composição Corporal , Obesidade , Masculino , Feminino , Humanos , Criança , Adolescente , Estudos Transversais , Índice de Massa Corporal , China , Tecido Adiposo
20.
Clin Anat ; 36(5): 726-736, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37096831

RESUMO

The suboccipital cavernous sinus (SCS) and the myodural bridge complex (MDBC) are both located in the suboccipital region. The SCS is regarded as a route for venous intracranial outflow and is often encountered during surgery. The MDBC consists of the suboccipital muscles, nuchal ligament, and myodural bridge and could be a power source for cerebrospinal fluid circulation. Intracranial pressure depends on intracranial blood volume and the cerebrospinal fluid. Since the SCS and MDBC have similar anatomical locations and functions, the aim of the present study was to reveal the relationships between them and the detailed anatomical characteristics of the SCS. The study involved gross dissection, histological staining, P45 plastination, and three-dimensional visualization techniques. The SCS consists of many small venous sinuses enclosed within a thin fibrous membrane that is strengthened by a fibrous arch closing the vertebral artery groove. The venous vessels are more abundant in the lateral and medial portions of the SCS than the middle portion. The middle and medial portions of the SCS are covered by the MDBC. Type I collagen fibers arranged in parallel and originating from the MDBC terminate on the SCS either directly or indirectly via the fibrous arch. The morphological features of SCS revealed in this research could serve as an anatomical basis for upper neck surgical procedures. There are parallel arrangements of type I collagen fibers between the MDBC and the SCS. The MDBC could change the blood volume in the SCS by pulling its wall during the head movement.


Assuntos
Seio Cavernoso , Vértebras Cervicais , Humanos , Vértebras Cervicais/anatomia & histologia , Colágeno Tipo I , Dura-Máter/anatomia & histologia , Pescoço/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa