Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; : e14390, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812107

RESUMO

PURPOSE: This study aims to evaluate the clinical performance of a deep learning (DL)-enhanced two-fold accelerated PET imaging method in patients with lymphoma. METHODS: A total of 123 cases devoid of lymphoma underwent whole-body 18F-FDG-PET/CT scans to facilitate the development of an advanced SAU2Net model, which combines the advantages of U2Net and attention mechanism. This model integrated inputs from simulated 1/2-dose (0.07 mCi/kg) PET acquisition across multiple slices to generate an estimated standard dose (0.14 mCi/kg) PET scan. Additional 39 cases with confirmed lymphoma pathology were utilized to evaluate the model's clinical performance. Assessment criteria encompassed peak-signal-to-noise ratio (PSNR), structural similarity index (SSIM), a 5-point Likert scale rated by two experienced physicians, SUV features, image noise in the liver, and contrast-to-noise ratio (CNR). Diagnostic outcomes, including lesion numbers and Deauville score, were also compared. RESULTS: Images enhanced by the proposed DL method exhibited superior image quality (P < 0.001) in comparison to low-dose acquisition. Moreover, they illustrated equivalent image quality in terms of subjective image analysis and lesion maximum standardized uptake value (SUVmax) as compared to the standard acquisition method. A linear regression model with y = 1.017x + 0.110 ( R 2 = 1.00 ${R^2} = \;1.00$ ) can be established between the enhanced scans and the standard acquisition for lesion SUVmax. With enhancement, increased signal-to-noise ratio (SNR), CNR, and reduced image noise were observed, surpassing those of the standard acquisition. DL-enhanced PET images got diagnostic results essentially equavalent to standard PET images according to two experienced readers. CONCLUSION: The proposed DL method could facilitate a 50% reduction in PET imaging duration for lymphoma patients, while concurrently preserving image quality and diagnostic accuracy.

2.
Angew Chem Int Ed Engl ; 62(14): e202218094, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36744674

RESUMO

Metal coordination compound (MCC) glasses [e.g., metal-organic framework (MOF) glass, coordination polymer glass, and metal inorganic-organic complex (MIOC) glass] are emerging members of the hybrid glass family. So far, a limited number of crystalline MCCs can be converted into glasses by melt-quenching. Here, we report a universal wet-chemistry method, by which the super-sized supramolecular MIOC glasses can be synthesized from non-meltable MOFs. Alcohol and acid were used as agents to inhibit crystallization. The MIOC glasses demonstrate unique features including high transparency, shaping capability, and anisotropic network. Directional photoluminescence with a large polarization ratio (≈47 %) was observed from samples doped with organic dyes. This crystallization-suppressing approach enables fabrication of super-sized MCC glasses, which cannot be achieved by conventional vitrification methods, and thus allows for exploring new MCC glasses possessing photonic functionalities.

3.
Opt Express ; 30(23): 42605-42613, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366711

RESUMO

Graphene/ZnS hybrid-dimensional heterostructure is an excellent combination to regulate and improve the conductivity and sensitivity of components, in which the interface effects have crucial impacts on the performance of devices. In this work, we investigate the interface characteristics of Graphene/ZnS 2D/3D heterostructures. X-ray photoelectron spectra show that the ZnS binding energy shifts to lower energy by 0.3 eV after forming heterojunction with graphene. The fluorescence and absorption spectra confirm the luminescence enhancement and blue-shift of the absorbance edge of ZnS caused by graphene. The composition of Graphene/ZnS heterostructure facilitates separation and transfer of spatial charges, resulting in rapid electron transport.

4.
NMR Biomed ; 35(9): e4750, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35474524

RESUMO

Quantitative susceptibility mapping (QSM) is used to quantify iron deposition in non-human primates in our study. Although QSM has many applications in detecting iron deposits in the human brain, including the distribution of iron deposits in specific brain regions, the change of iron deposition with aging, and the comparison of iron deposits between diseased groups and healthy controls, few studies have applied QSM to non-human primates, while most animal brain experiments focus on biochemical and anatomical results instead of non-invasive experiments. Additionally, brain imaging in children's research is difficult, but can be substituted using young rhesus monkeys, which are very similar to humans, as research animals. Therefore, understanding the relationship between iron deposition and age in rhesus macaques' brains can offer insights into both the developmental trajectory of magnetic susceptibility in the animal model and the correlated evidence in children's research. Twenty-three healthy rhesus macaque monkeys (23 ± 7.85 years, range 2-29 years) were included in this research. Seven regions of interest (ROIs-globus pallidus, substantia nigra, dentate nucleus, caudate nucleus, putamen, thalamus, red nucleus) have been analyzed in terms of QSM and R2 * (apparent relaxation rate). Susceptibility in most ROIs correlated significantly with the growth of age, similarly to the results for R2 *, but showed different trends in the thalamus and red nucleus, which may be caused by the different sensitivities of myelination and iron deposition in R2 * and QSM analysis. By assessing the correlation between iron content and age in healthy rhesus macaques' brains using QSM, we provide a piece of pilot information on normality for advanced animal disease models. Meanwhile, this study also could serve as the normative basis for further clinical studies using QSM for iron content quantification. Due to the comparison of the susceptibility on the same experimental objects, this research can also provide practical support for future research on characteristics for QSM and R2 *.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Ferro/análise , Macaca mulatta , Fenômenos Magnéticos , Imageamento por Ressonância Magnética/métodos
5.
Opt Lett ; 47(7): 1578-1581, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363682

RESUMO

Nonvolatile and giant modulation of luminescence can be realized by the ferroelectric gating effect in a Ga3+/Pr3+ co-doped BaTiO3 ultra-thin film epitaxially grown on a [Pb(Mg1/3Nb2/3)O3]0.7-[PbTiO3]0.3 single-crystallized substrate. The change behavior of the emission intensity matches that of the ferroelectric polarization hysteresis loop with a giant enhancement of over 13 times with negative polarization orientation. The interaction of O2- at the O2p orbital in the valence band and Pr3+ with injected holes by the ferroelectric gating effect promotes the formation of excited state O-, Pr4+, or Pr3+q. This ferroelectric gating method can promote the development of controllable photo-, electroluminescent, and other optoelectronic devices for display, sensing, communication, and so on.

6.
Neuroimage ; 242: 118477, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34403742

RESUMO

PURPOSE: A method named DECOMPOSE-QSM is developed to decompose bulk susceptibility measured with QSM into sub-voxel paramagnetic and diamagnetic components based on a three-pool complex signal model. METHODS: Multi-echo gradient echo signal is modeled as a summation of three weighted exponentials corresponding to three types of susceptibility sources: reference susceptibility, diamagnetic and paramagnetic susceptibility relative to the reference. Paramagnetic component susceptibility (PCS) and diamagnetic component susceptibility (DCS) maps are constructed to represent the sub-voxel compartments by solving for linear and nonlinear parameters in the model. RESULTS: Numerical forward simulation and phantom validation confirmed the ability of DECOMPOSE-QSM to separate the mixture of paramagnetic and diamagnetic components. The PCS obtained from temperature-variant brainstem imaging follows the Curie's Law, which further validated the model and the solver. Initial in vivo investigation of human brain images showed the ability to extract sub-voxel PCS and DCS sources that produce visually enhanced contrast between brain structures comparing to threshold QSM.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Neuroimagem , Imagens de Fantasmas
7.
Eur Radiol ; 31(9): 6419-6428, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33735394

RESUMO

OBJECTIVES: To evaluate the clinical performance of a deep learning (DL)-based method for brain MRI exams with reduced gadolinium-based contrast agent (GBCA) dose to provide better understanding of the readiness and limitations of this method. METHODS: Eighty-three consecutive patients (from March 2019 to August 2019) who underwent brain contrast-enhanced (CE) MRI were included. Three 3D T1-weighted images with zero-dose, low-dose (10%), and full-dose (100%) GBCA were collected. The first 30 cases were used to train a DL model to synthesize the full-dose GBCA images from the zero-dose and low-dose image pairs. The remaining 53 cases were used for testing. The enhancement pattern, number, and location of enhancing lesions were recorded. Overall image quality, image signal noise ratio (SNR), lesion conspicuity, and lesion enhancement were assessed. RESULTS: Lesion detection from the DL-synthesized CE-MRI image accurately matched those from the true full-dose CE-MRI images in 48 of 53 cases (90.6%). The DL method identified the lesions in 34 of 36 cases (94.4%) with a single enhanced lesion and all lesions in 3 of 6 cases (50.0%) in cases with multiple enhancing lesions. The agreement between synthesized and true full-dose CE-MRI images were 0.73, 0.63, 0.89, and 0.87 for image quality, image SNR, lesion conspicuity, and lesion enhancement, respectively. CONCLUSIONS: The proposed DL method is a feasible way to minimize the dosage of GBCAs in brain MRI without sacrificing the diagnostic information. Missing enhancement of small lesions in patients with multiple lesions was observed, requiring improvements in algorithms or dosage design. KEY POINTS: • This study evaluated the clinical performance of a DL-based reconstruction method for significant dose reduction in GBCA contrast-enhanced MRI exams. • The proposed DL method has the potential to satisfy the routine radiological diagnosis needs in certain clinical applications.


Assuntos
Meios de Contraste , Aprendizado Profundo , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Neuroimagem
8.
J Chem Phys ; 155(24): 244304, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34972362

RESUMO

Stimulated Raman scattering (SRS) of liquid and ice-Ih D2O was investigated using a pulsed Nd:YAG laser with a wavelength of 532 nm. The high-order Stokes peaks and corresponding anti-Stokes SRS [Coherent Anti-Stokes Raman Spectroscopy (CARS)] peaks were obtained. Two symmetric and antisymmetric Raman modes of stretching vibrations were observed in liquid D2O, while only a symmetric stretching vibration mode was observed in ice-Ih D2O. Pure Stokes SRS is always collinear with the pump beam along the axial direction. Some ring-like Stokes SRS and CARS shifts, which originate from four-wave mixing processes, can also be observed only in the forward direction along with different angles meeting the phase-matching criteria, respectively. Simultaneously, the temporal behavior of SRS in liquid and ice-Ih D2O was examined, and the temporal waveforms of the pump laser pulse, transmitted pump pulse, and the forward SRS pulse were measured. In both cases, SRS was the dominant contributor to stimulated scattering. However, the efficiency values drastically decreased due to the self-termination behavior of SRS in liquid D2O, which arose from the thermal self-defocusing of both the pump beam and the SRS beam, owing to the Stokes shift-related opto-heating effect. In contrast, for the SRS process in ice-Ih D2O, the thermal self-defocusing influence was negligible, benefitting from a much greater thermal conductivity and a higher conversion efficiency of SRS generation retained under both of the conditions.

9.
Opt Express ; 28(22): 33068-33076, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114976

RESUMO

Resonance Raman scattering can be used to investigate the ground and excited state information of carotenoid. It is known that the Dushinsky rotation can significantly influence the resonant Raman intensity of ß-carotene (ß-car). The excited state geometry revealed by the double components feature of the C = C stretching vibrational modes and the environmental dependence of the Raman intensity for each component remain unknown. We explore the influence of environmental factors on the relative intensity of these two C = C stretching vibration modes and perform two-dimensional resonance Raman correlation analysis to reveal the changes on ß-car excited state geometry. The results show that the relative wavelength difference between the 0-0 absorption and the excitation is the key factor that decides the intensity ratio of the two components and that the intensity of each mode is modulated by environmental factors. This modulation is closely related to the excited state geometry and dynamics, effective conjugation length, and electron-phonon coupling constant. It also shows that the asynchronous cross-peaks in the two-dimensional resonance Raman correlation spectrum (2DRRCOS) can effectively characterize the degree of the varied electron-phonon coupling with the changing conditions. These results are not only complementary to the research on the excited states of carotenoids but also applicable to investigate the environmental dependence of Raman intensity for a lot of π-conjugated molecules.

10.
Opt Express ; 28(17): 24772-24788, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32907010

RESUMO

Many plasmon-induced transparency (PIT) metamaterials previously reported had limited functions. Their tunabilities were realized by complex discrete structures, which greatly increased the difficulty and cost of device fabrication and adversely affected their resonance characteristics. It is an open question to adjust the Fermi levels of many graphene patterns with only a few in-plane electrodes. We propose and numerically study a novel electrically tunable and multifunctional trigate graphene metamaterial (TGGM) based on the concept of "Lakes of Wada". Benefiting from the trigate regulation, our proposed TGGM turns out to exhibit excellent characteristics, that can not only be used for terahertz band-stop filter, terahertz refractive index sensor, near-field optical switch, slow-light device, but also for double PIT window metamaterial with broad transparency windows and large tunable frequency range.

11.
NMR Biomed ; 33(10): e4365, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32627266

RESUMO

PURPOSE: To probe cerebral microstructural abnormalities and assess changes of neuronal density in Disrupted-in-Schizophrenia-1 (DISC1) mice using non-Gaussian diffusion and quantitative susceptibility mapping (QSM). MATERIALS AND METHODS: Brain specimens of transgenic DISC1 mice (n = 8) and control mice (n = 7) were scanned. Metrics of neurite orientation dispersion and density imaging (NODDI) and diffusion kurtosis imaging (DKI), as well as QSM, were acquired. Cell counting was performed on Nissl-stained sections. Group differences of imaging metrics and cell density were assessed. Pearson correlations between imaging metrics and cell densities were also examined. RESULTS: Significant increases of neuronal density were observed in the hippocampus of DISC1 mice. DKI metrics such as mean kurtosis exhibited significant group differences in the caudate putamen (P = 0.015), cerebral cortex (P = 0.021), and hippocampus (P = 0.011). However, DKI metrics did not correlate with cell density. In contrast, significant positive correlation between density of neurons and the neurite density index of NODDI in the hippocampus was observed (r = 0.783, P = 0.007). Significant correlation between density of neurons and susceptibility (r = 0.657, P = 0.039), as well as between density of neuroglia and susceptibility (r = 0.750, P = 0.013), was also observed in the hippocampus. CONCLUSION: The imaging metrics derived from DKI were not sensitive specifically to cell density, while NODDI could provide diffusion metrics sensitive to density of neurons. The magnetic susceptibility values derived from the QSM method can serve as a sensitive biomarker for quantifying neuronal density.


Assuntos
Imagem de Tensor de Difusão , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Contagem de Células , Hipocampo/diagnóstico por imagem , Fenômenos Magnéticos , Camundongos Mutantes , Camundongos Transgênicos
12.
Phys Chem Chem Phys ; 22(10): 5702-5710, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32103207

RESUMO

Halogen bonding, an attractive interaction that is analogous to hydrogen bonding, has been widely investigated by computational methods. However, halogen bonding in solution is hard to study by spectroscopic techniques since the intermolecular interaction often gives overlapping bands and may be difficult to interpret. The traditional interpretation of iodomethane-ethanol mixtures considered only hydrogen bonding effects and the experimental investigation was limited. Here, we employed near-infrared (NIR) spectroscopy, Raman, density functional theory calculation, and two-dimensional (2D) correlation analysis to find evidence of the halogen bonding in iodomethane-ethanol mixtures. Our results suggest that the blue-shifting C-I stretching band is probably due to the cooperative influence from halogen bonding, hydrogen bonding, and the solvent effect, while the O-H band is a cumulative band from three dimer complexes. The 2D correlation spectra further validate the hypothesis above and reveal the interaction evolution from the ethanol-rich region to the iodomethane region. These results indicate that the unique nature of the iodomethane-ethanol mixture and the larger σ-hole strengthen the halogen bond, leading to particular spectroscopic results which are different from those of the other halogenated alkanes.

13.
Neuroimage ; 191: 176-185, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30739060

RESUMO

Beta amyloid is a protein fragment snipped from the amyloid precursor protein (APP). Aggregation of these peptides into amyloid plaques is one of the hallmarks of Alzheimer's disease. MR imaging of beta amyloid plaques has been attempted using various techniques, notably with T2* contrast. The non-invasive detectability of beta amyloid plaques in MR images has so far been largely attributed to focal iron deposition accompanying the plaques. It is believed that the T2* shortening effects of paramagnetic iron are the primary source of contrast between plaques and surrounding tissue. Amyloid plaque itself has been reported to induce no magnetic susceptibility effect. We hypothesized that aggregations of beta amyloid would increase electron density and induce notable changes in local susceptibility value, large enough to generate contrast relative to surrounding normal tissues that can be visualized by quantitative susceptibility mapping (QSM) MR imaging. To test this hypothesis, we first demonstrated in a phantom that beta amyloid is diamagnetic and can generate strong contrast on susceptibility maps. We then conducted experiments on a transgenic mouse model of Alzheimer's disease that is known to mimic the formation of human beta amyloid but without neurofibrillary tangles or neuronal death. Over a period of 18 months, we showed that QSM can be used to longitudinally monitor beta amyloid accumulation and accompanied iron deposition in vivo. Individual beta amyloid plaque can also be visualized ex vivo in high resolution susceptibility maps. Moreover, the measured negative susceptibility map and positive susceptibility map could provide histology-like image contrast for identifying deposition of beta amyloid plaques and iron. Finally, we demonstrated that the diamagnetic susceptibility of beta amyloid can also be observed in brain specimens of AD patients. The ability to assess beta amyloid aggregation non-invasively with QSM MR imaging may aid the diagnosis of Alzheimer's disease.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Placa Amiloide/diagnóstico por imagem , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/análise , Animais , Humanos , Processamento de Imagem Assistida por Computador/métodos , Ferro/análise , Camundongos , Camundongos Transgênicos , Placa Amiloide/patologia
14.
Neurobiol Dis ; 119: 79-87, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30048802

RESUMO

OBJECTIVES: To probe microstructural changes that are associated with subconcussive head impact exposure in deep and cortical gray matter of high school football players over a single season. METHODS: Players underwent diffusion kurtosis imaging (DKI) and quantitative susceptibility mapping (QSM) scans. Head impact data was recorded. Association between parametric changes and frequency of frontal head impact was assessed. RESULTS: In deep gray matter, significant decreases in mean kurtosis (MK) and increases in mean diffusivity (MD) over the season were observed in the thalamus and putamen. Correlations between changes in DKI metrics and frequency of frontal impacts were observed in the putamen and caudate. In cortical gray matter, decreases in MK were observed in regions including the pars triangularis and inferior parietal. In addition, increases in MD were observed in the rostral middle frontal cortices. Negative correlations between MK and frequency of frontal impacts were observed in the posterior part of the brain including the pericalcarine, lingual and middle temporal cortices. Magnetic susceptibility values exhibited no significant difference or correlation, suggesting these diffusion changes common within the group may not be associated with iron-related mechanisms. CONCLUSION: Microstructural alterations over the season and correlations with head impacts were captured by DKI metrics, which suggested that DKI imaging of gray matter may yield valuable biomarkers for evaluating brain injuries associated with subconcussive head impact. Findings of associations between frontal impacts and changes in posterior cortical gray matter also indicated that contrecoup injury rather than coup injury might be the dominant mechanism underlying the observed microstructural alterations. ADVANCES IN KNOWLEDGE: Significant microstructural changes, as reflected by DKI metrics, in cortical gray matter such as the rostral middle frontal cortices, and in deep gray matter such as the thalamus were observed in high school football players over the course of a single season without clinically diagnosed concussion. QSM showed no evidence of iron-related changes in the observed subconcussive brain injuries. The detected microstructural changes in cortical and deep gray matter correlated with frequency of subconcussive head impacts. IMPLICATIONS FOR PATIENT CARE: DKI may yield valuable biomarkers for evaluating the severity of brain injuries associated with subconcussive head impacts in contact sport athletes.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Imagem de Tensor de Difusão , Futebol Americano/lesões , Substância Cinzenta/diagnóstico por imagem , Estações do Ano , Adolescente , Estudos de Coortes , Imagem de Tensor de Difusão/tendências , Futebol Americano/tendências , Humanos , Masculino , Putamen/diagnóstico por imagem , Tálamo/diagnóstico por imagem
16.
Hum Brain Mapp ; 38(5): 2495-2508, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28176436

RESUMO

One aim of this study is to use non-Gaussian diffusion kurtosis imaging (DKI) for capturing microstructural abnormalities in gray matter of Alzheimer's disease (AD). The other aim is to compare DKI metrics against thickness of cortical gray matter and volume of deep gray matter, respectively. A cohort of 18 patients with AD, 18 patients with amnestic mild cognitive impairment (MCI), and 18 normal controls underwent morphological and DKI MR imaging. Images were investigated using regions-of-interest-based analyses for deep gray matter and vertex-wise analyses for cortical gray matter. In deep gray matter, more regions showed DKI parametric abnormalities than atrophies at the early MCI stage. Mean kurtosis (MK) exhibited the largest number of significant abnormalities among all DKI metrics. At the later AD stage, diffusional abnormalities were observed in fewer regions than atrophies. In cortical gray matter, abnormalities in thickness were mainly in the medial and lateral temporal lobes, which fit the locations of known early pathological changes. Microstructural abnormalities were predominantly in the parietal and even frontal lobes, which fit the locations of known late pathological changes. In conclusion, MK can complement conventional diffusion metrics for detecting microstructural changes, especially in deep gray matter. This study also provides evidence supporting the notion that microstructural changes predate morphological changes. Hum Brain Mapp 38:2495-2508, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Doença de Alzheimer/patologia , Mapeamento Encefálico , Disfunção Cognitiva/patologia , Substância Cinzenta/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica
17.
Opt Express ; 25(25): 31670-31677, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245838

RESUMO

355 nm pulsed laser is employed to excite pre-resonance forward stimulated Raman scattering (FSRS) of liquid water at ambient temperature. Due to the shockwave induced dynamic high pressure, the obtained Raman spectra begin to exhibit double peaks distribution at 3318 and 3373 cm-1 with the input energy of 17 mJ,which correspond with OH stretching vibration with strong and weak hydrogen (H) bonds. With laser energy rising from 17 to 27 mJ, the Stokes line at 3318 cm-1 shifts to 3255 and 3230 cm-1 because of the high pressure being enlarged. When the energy is up to 32 mJ, only 3373 cm-1 peak exists. The strong and weak H bond exhibit quite different energy dependent behaviors.

18.
Molecules ; 22(10)2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28934156

RESUMO

Absorption, fluorescence spectra of chlorophyll a (Chl-a) and all-trans-ß-carotene (ß-Car) mixing solution are investigated in different polarity and polarizability solvents. The carotenoids regulate the energy flow in photosynthesis by interaction with chlorophyll, leading to an observable reduction of Chl-a fluorescence. The fluorescence red shifts with the increasing solvent polarizability. The energy transfer in the Chl-a and ß-Car system is proposed. The electron transfer should be dominant in quenching Chl-a fluorescence rather than the energy transfer in this system. Polar solvent with large polarizability shows high quenching efficiency. When dissolved in carbon tetrachloride, Chl-a presents red shift of absorption and blue shift of fluorescence spectra with increasing ß-Car concentration, which implies a Chl-a conformational change.


Assuntos
Clorofila/química , beta Caroteno/química , Clorofila A , Fluorescência , Fotossíntese , Solventes/química
19.
Int J Mol Sci ; 17(6)2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27338363

RESUMO

Modulating the chlorophyll a (Chl-a) fluorescence by all-trans-ß-Carotene (ß-Car) in the polarity and non-polarity solutions was investigated. The fluorescence intensity of Chl-a decreased as the concentration of ß-Car increased. The excited electronic levels of Chl-a and ß-Car became much closer owing to the solvent effect, which led to the electron transfer between both two molecules. A electron-separated pair Chl(-)·Chl⁺ that is not luminous was formed due to electron transfer. The solution of Chl-a and ß-car in C3H6O was similar to the internal environment of chloroplast. We conclude that the polar solvent is good for the fluorescent modulation in photosystem II.


Assuntos
Clorofila/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , beta Caroteno/metabolismo , Clorofila/química , Clorofila A , Fluorescência , Complexo de Proteína do Fotossistema II/química , Solventes , beta Caroteno/química
20.
NMR Biomed ; 28(10): 1267-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26313542

RESUMO

The purpose of this work was to investigate the effects of hemispheric location, gender and age on susceptibility value, as well as the association between susceptibility value and diffusional metrics, in deep gray matter. Iron content was estimated in vivo using quantitative susceptibility mapping. Microstructure was probed using diffusional kurtosis imaging. Regional susceptibility and diffusional metrics were measured for the putamen, caudate nucleus, globus pallidus, thalamus, substantia nigra and red nucleus in 42 healthy adults (age range 25-78 years). Susceptibility value was significantly higher in the left than the right side of the caudate nucleus (P = 0.043) and substantia nigra (P < 0.001). Women exhibited lower susceptibility values than men in the thalamus (P < 0.001) and red nucleus (P = 0.032). Significant age-related increases of susceptibility were observed in the putamen (P < 0.001), red nucleus (P < 0.001), substantia nigra (P = 0.004), caudate nucleus (P < 0.001) and globus pallidus (P = 0.017). The putamen exhibited the highest rate of iron accumulation with aging (slope of linear regression = 0.73 × 10(-3) ppm/year), which was nearly twice those in substantia nigra (slope = 0.40 × 10(-3) ppm/year) and caudate nucleus (slope = 0.39 × 10(-3) ppm/year). Significant positive correlations between the susceptibility value and diffusion measurements were observed for fractional anisotropy (P = 0.045) and mean kurtosis (P = 0.048) in the putamen without controlling for age. Neither correlation was significant after controlling for age. Hemisphere, gender and age-related differences in iron measurements were observed in deep gray matter. Notably, the putamen exhibited the highest rate of increase in susceptibility with aging. Correlations between susceptibility value and microstructural measurements were inconclusive. These findings could provide new clues for unveiling mechanisms underlying iron-related neurodegenerative diseases.


Assuntos
Envelhecimento/metabolismo , Química Encefálica , Imagem de Difusão por Ressonância Magnética/métodos , Substância Cinzenta/química , Ferro/análise , Caracteres Sexuais , Adulto , Idoso , Suscetibilidade a Doenças , Dominância Cerebral , Feminino , Humanos , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/diagnóstico , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Doença de Parkinson/etiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa