Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Neurobiol Learn Mem ; 187: 107561, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838984

RESUMO

INTRODUCTION: The neuropeptide Y (NPY) is broadly distributed in the central nervous system (CNS), and it has been related to neuroprotective functions. NPY seems to be an important component to counteract brain damage and cognitive impairment mediated by drugs of abuse and neurodegenerative diseases, and both NPY and its Y2 receptor (Y2R) are highly expressed in the hippocampus, critical for learning and memory. We have recently demonstrated its influence on cognitive functions; however, the specific mechanism and involved brain regions where NPY modulates spatial memory by acting on Y2R remain unclear. METHODS: Here, we examined the involvement of the hippocampal NPY Y2R in spatial memory and associated changes in brain metabolism by bilateral administration of the selective antagonist BIIE0246 into the rat dorsal hippocampus. To further evaluate the relationship between memory functions and neuronal activity, we analysed the regional expression of the mitochondrial enzyme cytochrome c oxidase (CCO) as an index of oxidative metabolic capacity in limbic and non-limbic brain regions. RESULTS: The acute blockade of NPY Y2R significantly improved spatial memory recall in rats trained in the Morris water maze that matched metabolic activity changes in spatial memory processing regions. Specifically, CCO activity changes were found in the dentate gyrus of the dorsal hippocampus and CA1 subfield of the ventral hippocampus, the infralimbic region of the PFC and the mammillary bodies. CONCLUSIONS: These findings suggest that the NPY hippocampal system, through its Y2R receptor, influences spatial memory recall (retrieval) and exerts control over patterns of brain activation that are relevant for associative learning, probably mediated by Y2R modulation of long-term potentiation and long-term depression.


Assuntos
Hipocampo/metabolismo , Rememoração Mental/fisiologia , Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Memória Espacial/fisiologia , Animais , Encéfalo/metabolismo , Sistema Límbico/metabolismo , Masculino , Teste do Labirinto Aquático de Morris , Plasticidade Neuronal , Neurônios/metabolismo , Ratos
2.
Hippocampus ; 26(10): 1265-75, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27102086

RESUMO

Previous studies showed the involvement of brain regions associated with both spatial learning and associative learning in spatial memory extinction, although the specific role of the dorsal and ventral hippocampus and the extended hippocampal system including the mammillary body in the process is still controversial. The present study aimed to identify the involvement of the dorsal and ventral hippocampus, together with cortical regions, the amygdaloid nuclei, and the mammillary bodies in the extinction of a spatial memory task. To address these issues, quantitative cytochrome c oxidase histochemistry was applied as a metabolic brain mapping method. Rats were trained in a reference memory task using the Morris water maze, followed by an extinction procedure of the previously acquired memory task. Results show that rats learned successfully the spatial memory task as shown by the progressive decrease in measured latencies to reach the escape platform and the results obtained in the probe test. Spatial memory was subsequently extinguished as shown by the descending preference for the previously reinforced location. A control naïve group was added to ensure that brain metabolic changes were specifically related with performance in the spatial memory extinction task. Extinction of the original spatial learning task significantly modified the metabolic activity in the dorsal and ventral hippocampus, the amygdala and the mammillary bodies. Moreover, the ventral hippocampus, the lateral mammillary body and the retrosplenial cortex were differentially recruited in the spatial memory extinction task, as shown by group differences in brain metabolic networks. These findings provide new insights on the brain regions and functional brain networks underlying spatial memory, and specifically spatial memory extinction. © 2016 Wiley Periodicals, Inc.


Assuntos
Extinção Psicológica/fisiologia , Hipocampo/metabolismo , Memória Espacial/fisiologia , Tonsila do Cerebelo/metabolismo , Animais , Córtex Cerebral/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Masculino , Corpos Mamilares/metabolismo , Aprendizagem em Labirinto/fisiologia , Vias Neurais/metabolismo , Testes Neuropsicológicos , Distribuição Aleatória , Ratos Wistar
3.
Neurobiol Learn Mem ; 114: 165-70, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24937013

RESUMO

Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes.


Assuntos
Encéfalo/fisiologia , Aprendizagem por Discriminação/fisiologia , Aprendizagem em Labirinto/fisiologia , Rede Nervosa/fisiologia , Percepção Visual/fisiologia , Animais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Masculino , Orientação/fisiologia , Ratos , Ratos Wistar
4.
Behav Brain Res ; 467: 115020, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38679144

RESUMO

Prolonged consumption of diets high in saturated fat and sugar has been related to obesity and overweight, which in turn are linked to cognitive impairment in both humans and rodents. This has become a current issue, especially in children and adolescents, because these stages are crucial to neurodevelopmental processes and programming of adult behavior. To evaluate the effects of gestational and early exposure to an obesogenic diet, three groups with different dietary patterns were established: high-fat and high-sucrose diet (HFS), standard diet (SD), and a dietary shift from a high-fat, high-sucrose diet to a standard diet after weaning (R). Spatial learning and behavioral flexibility in adult male and female Wistar rats were evaluated using the Morris water maze (MWM) at PND 60. Furthermore, regional brain oxidative metabolism was assessed in the prefrontal cortex and the hippocampus. Contrary to our hypothesis, the HFS diet groups showed similar performance on the spatial learning task as the other groups, although they showed impaired cognitive flexibility. The HFS group had increased brain metabolic capacity compared to that of animals fed the standard diet. Shifting from the HFS diet to the SD diet after weaning restored the brain metabolic capacity in both sexes to levels similar to those observed in animals fed the SD diet. In addition, animals in the R group performed similarly to those fed the SD diet in the Morris water maze in both tasks. However, dietary shift from HFS diet to standard diet after weaning had only moderate sex-dependent effects on body weight and fat distribution. In conclusion, switching from an HFS diet to a balanced diet after weaning would have beneficial effects on behavioral flexibility and brain metabolism, without significant sex differences.


Assuntos
Encéfalo , Dieta Hiperlipídica , Efeitos Tardios da Exposição Pré-Natal , Ratos Wistar , Desmame , Animais , Feminino , Masculino , Dieta Hiperlipídica/efeitos adversos , Gravidez , Ratos , Encéfalo/metabolismo , Aprendizagem em Labirinto/fisiologia , Sacarose Alimentar/administração & dosagem , Comportamento Animal/fisiologia , Córtex Pré-Frontal/metabolismo , Hipocampo/metabolismo
5.
Psicothema ; 36(2): 133-144, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38661160

RESUMO

BACKGROUND: Exposure to early life stress (ELS) and maternal consumption of a high-fat and high-sugar diet can have detrimental effects on adult emotional responses. The microbiota and gut-brain axis have been proposed as playing a mediating role in the regulation of stress and emotion. METHOD: Young male rats were exposed to maternal separation (MS) together with maternal and postnatal consumption of a HFS diet (45%kcal saturated fat, 17%kcal sucrose). Anxiety-like behaviour was evaluated using an elevated zero-maze, and depression-like behaviour using the forced-swim and sucrose preference tests. Microbiota composition and derived metabolites were also analysed in faecal samples using a gas chromatograph and mass spectrometry. RESULTS: Combined exposure to MS and lifelong consumption of a HFS diet partially reversed the abnormal anxiety-like and depression-like behaviours in early adulthood caused by each adverse factor alone. Diet composition had a greater negative impact than ELS exposure on the gut microbiota, and both environmental factors interacted with microbiota composition partially counteracting their negative effects. CONCLUSIONS: The effects of exposure to early life stress and a HFS diet independently are partially reversed after the combination of both factors. These results suggest that ELS and diet interact to modulate adult stress response and gut microbiota.


Assuntos
Ansiedade , Depressão , Dieta Ocidental , Microbioma Gastrointestinal , Privação Materna , Estresse Psicológico , Animais , Masculino , Dieta Ocidental/efeitos adversos , Ratos , Ansiedade/microbiologia , Depressão/microbiologia , Emoções , Ratos Wistar , Feminino
6.
Artigo em Inglês | MEDLINE | ID: mdl-34973413

RESUMO

Gender is considered as a pivotal determinant of mental health. Indeed, several psychiatric disorders such as anxiety and depression are more common and persistent in women than in men. In the past two decades, impaired brain energy metabolism has been highlighted as a risk factor for the development of these psychiatric disorders. However, comprehensive behavioural and neurobiological studies in brain regions relevant to anxiety and depression symptomatology are scarce. In the present study, we summarize findings describing cannabidiol effects on anxiety and depression in maternally separated female mice as a well-established rodent model of early-life stress associated with many mental disorders. Our results indicate that cannabidiol could prevent anxiolytic- and depressive-related behaviour in early-life stressed female mice. Additionally, maternal separation with early weaning (MSEW) caused long-term changes in brain oxidative metabolism in both nucleus accumbens and amygdalar complex measured by cytochrome c oxidase quantitative histochemistry. However, cannabidiol treatment could not revert brain oxidative metabolism impairment. Moreover, we identified hyperphosphorylation of mTOR and ERK 1/2 proteins in the amygdala but not in the striatum, that could also reflect altered brain intracellular signalling related with to bioenergetic impairment. Altogether, our study supports the hypothesis that MSEW induces profound long-lasting molecular changes in mTOR signalling and brain energy metabolism related to depressive-like and anxiety-like behaviours in female mice, which were partially ameliorated by CBD administration.


Assuntos
Anticonvulsivantes/administração & dosagem , Ansiedade/tratamento farmacológico , Canabidiol/administração & dosagem , Emoções/fisiologia , Privação Materna , Núcleo Accumbens/efeitos dos fármacos , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Comportamento Animal , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Serina-Treonina Quinases TOR/genética , Desmame
7.
Physiol Behav ; 257: 113969, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181786

RESUMO

Prolonged daily intake of Western-type diet rich in saturated fats and sugars, and exposure to early life stress have been independently linked to impaired neurodevelopment and behaviour in animal models. However, sex-specific effects of both environmental factors combined on spatial learning and memory, behavioural flexibility, and brain oxidative capacity have still not been addressed. The current study aimed to evaluate the impact of maternal and postnatal exposure to a high-fat and high-sugar diet (HFS), and exposure to early life stress by maternal separation in adult male and female Wistar rats. For this purpose, spatial learning and memory and behavioural flexibility were evaluated in the Morris water maze, and regional brain oxidative capacity and oxidative stress levels were measured in the hippocampus and medial prefrontal cortex. Spatial memory, regional brain oxidative metabolism, and levels of oxidative stress differed between females and males, suggesting sexual dimorphism in the effects of a HFS diet and early life stress. Males fed the HFS diet performed better than all other experimental groups independently of early life stress exposure. However, behavioural flexibility evaluated in the spatial reversal leaning task was impaired in males fed the HFS diet. In addition, exposure to maternal separation or the HFS diet increased the metabolic capacity of the prefrontal cortex and dorsal hippocampus in males and females. Levels of oxidative stress measured in the latter brain regions were also increased in groups fed the HFS diet, but maternal separation seemed to dampen regional brain oxidative stress levels. Therefore, these results suggest a compensatory effect resulting from the interaction between prolonged exposure to a HFS diet and early life stress.


Assuntos
Encéfalo , Aprendizagem em Labirinto , Caracteres Sexuais , Aprendizagem Espacial , Animais , Feminino , Masculino , Ratos , Encéfalo/metabolismo , Dieta Hiperlipídica , Dieta Ocidental/efeitos adversos , Hipocampo/metabolismo , Privação Materna , Ratos Wistar , Estresse Psicológico
8.
Behav Brain Res ; 396: 112864, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827566

RESUMO

Neuropeptide Y (NPY) is highly abundant in the brain and is released as a co-transmitter with plasticity-related neurotransmitters such as glutamate, GABA and noradrenaline. Functionally, its release is associated with appetite, anxiety, and stress regulation. NPY acting on Y2 receptors (Y2R), facilitates fear extinction, suggesting a role in associative memory. Here, we explored to what extent NPY action at Y2R contributes to hippocampus-dependent spatial memory and found that dorsal intrahippocampal receptor antagonism improved spatial reference memory acquired in a water maze in rats, without affecting anxiety levels, or spontaneous motor activity. Water maze training resulted in an increase of Y2R, but not Y1R expression in the hippocampus. By contrast, in the prefrontal cortex there was a decrease in Y2R, and an increase of Y1R expression. Our results indicate that neuropeptide Y2R are significantly involved in hippocampus-dependent spatial memory and that receptor expression is dynamically regulated by this learning experience. Effects are consistent with a metaplastic contribution of NPY receptors to cumulative spatial learning.


Assuntos
Extinção Psicológica/fisiologia , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Córtex Pré-Frontal/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Memória Espacial/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Extinção Psicológica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Memória Espacial/efeitos dos fármacos
9.
Front Psychol ; 11: 564413, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329193

RESUMO

The Western diet (WD) pattern characterized by high daily intake of saturated fats and refined carbohydrates often leads to obesity and overweight, and it has been linked to cognitive impairment and emotional disorders in both animal models and humans. This dietary pattern alters the composition of gut microbiota, influencing brain function by different mechanisms involving the gut-brain axis. In addition, long-term exposure to highly palatable foods typical of WD could induce addictive-like eating behaviors and hypothalamic-pituitary-adrenal (HPA) axis dysregulation associated with chronic stress, anxiety, and depression. In turn, chronic stress modulates eating behavior, and it could have detrimental effects on different brain regions such as the hippocampus, hypothalamus, amygdala, and several cortical regions. Moreover, obesity and overweight induce neuroinflammation, causing neuronal dysfunction. In this review, we summarize the current scientific evidence about the mechanisms and factors relating WD consumption with altered brain function and behavior. Possible therapeutic interventions and limitations are also discussed, aiming to tackle and prevent this current pandemic.

10.
Brain Sci ; 10(7)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674298

RESUMO

Sex differences have been reported in the susceptibility to early life stress and its neurobiological correlates in humans and experimental animals. However, most of the current research with animal models of early stress has been performed mainly in males. In the present study, prolonged maternal separation (MS) paradigm was applied as an animal model to resemble the effects of adverse early experiences in male and female rats. Regional brain mitochondrial function, monoaminergic activity, and neuroinflammation were evaluated as adults. Mitochondrial energy metabolism was greatly decreased in MS females as compared with MS males in the prefrontal cortex, dorsal hippocampus, and the nucleus accumbens shell. In addition, MS males had lower serotonin levels and increased serotonin turnover in the prefrontal cortex and the hippocampus. However, MS females showed increased dopamine turnover in the prefrontal cortex and increased norepinephrine turnover in the striatum, but decreased dopamine turnover in the hippocampus. Sex differences were also found for pro-inflammatory cytokine levels, with increased levels of TNF-α and IL-6 in the prefrontal cortex and hippocampus of MS males, and increased IL-6 levels in the striatum of MS females. These results evidence the complex sex- and brain region-specific long-term consequences of early life stress.

11.
Dev Psychobiol ; 51(3): 277-88, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19125421

RESUMO

We tested the hypothesis that adolescent Sprague-Dawley females may be more resistant than males to display impulsive behavior and lower prefrontal cortex thickness after mother-infant separation (MS). Starting at postnatal day 2 (P2), the MS group was separated 6 hr/day and the early handled (EH) group 15 min/day for 10 days, and another group was standard facility reared (SFR). Subjects were examined for novel open-field activity (P28), light-dark apparatus (P29), familiar open-field (P30) and frontal cortical thickness. This protocol resulted in impulsive behavior in MS rats relative to EH and SFR, but this effect was less pronounced in females than males. MS affected the two sexes differently in terms of decreased prefrontal cortex dorsoventral thickness, with this effect being significant in males but not females. Neuroanatomical and behavioral documentation that adolescent females are more resistant than males to ADHD-like effects of maternal separation have not been previously reported.


Assuntos
Nível de Alerta/fisiologia , Comportamento Impulsivo/patologia , Privação Materna , Córtex Pré-Frontal/patologia , Caracteres Sexuais , Animais , Medo/fisiologia , Feminino , Humanos , Masculino , Atividade Motora/fisiologia , Tamanho do Órgão/fisiologia , Ratos , Ratos Sprague-Dawley , Maturidade Sexual/fisiologia , Meio Social
12.
PLoS One ; 14(12): e0226377, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31830106

RESUMO

Early life stress is associated with long-term and pervasive adverse effects on neuroendocrine development, affecting normal cognitive and emotional development. Experimental manipulations like environmental enrichment (EE) may potentially reverse the effects of early life stress induced by maternal separation (MS) paradigm in rodents. However, the functional brain networks involved in the effects of EE after prolonged exposure to MS have not yet been investigated. In order to evaluate possible changes in brain functional connectivity induced by EE after MS, quantitative cytochrome c oxidase (CCO) histochemistry was applied to determine regional brain oxidative metabolism in adult male rats. Unexpectedly, results show that prolonged MS during the entire weaning period did not cause any detrimental effects on spatial learning and memory, including depressive-like behavior evaluated in the forced-swim test, and decreased anxiety-like behavior. However, EE seemed to alter anxiety- and depression-like behaviors in both control and MS groups, but improved spatial memory in the latter groups. Analysis of brain CCO activity showed significantly lower metabolic capacity in most brain regions selected in EE groups probably associated with chronic stress, but no effects of MS on brain metabolic capacity. In addition, principal component analysis of CCO activity revealed increased large-scale functional brain connectivity comprising at least three main networks affected by EE in both MS and control groups. Moreover, EE induced a pattern of functional brain connectivity associated with stress and anxiety-like behavior as compared with non-enriched groups. In conclusion, EE had differential effects on cognition and emotional behavior irrespective of exposure to MS. In view of the remarkable effects of EE on brain function and behavior, implementation of rodent housing conditions should be optimized by evaluating the balance between scientific validity and animal welfare.


Assuntos
Ansiedade/fisiopatologia , Comportamento Animal , Encéfalo/fisiopatologia , Meio Ambiente , Rede Nervosa , Estresse Psicológico , Animais , Animais Recém-Nascidos , Feminino , Masculino , Privação Materna , Ratos , Ratos Wistar , Aprendizagem Espacial
13.
Psicothema ; 31(1): 46-52, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30664410

RESUMO

BACKGROUND: Exposure to maternal separation (MS) in rodents may have long-lasting consequences for the structure and function of several brain regions, eventually associated with alterations in cognition and emotion later in life. Post-weaning environmental enrichment (EE) has been reported to ameliorate the detrimental effects of exposure to early life stress mainly in the hippocampus. METHOD: In vivo magnetic resonance imaging (MRI) was applied to evaluate possible volumetric changes in the dorsal and ventral hippocampus, the medial prefrontal cortex and the dorsal striatum of 90-day-old male rats after daily MS for 240 min from postnatal days 2-21. RESULTS: No significant volume changes were found in the selected brain regions in MS animals as compared with an age-matched control group. However, additional groups of control and MS animals with EE from days 21-60 showed significant volume increases in the medial prefrontal cortex and the ventral hippocampus as compared to the groups without EE. In addition, general hemispheric asymmetry was found in the volume of the brain regions measured. CONCLUSIONS: Our results demonstrate that EE could have differential effects depending on previous exposure to MS and on the development of brain lateralization.


Assuntos
Encéfalo/crescimento & desenvolvimento , Privação Materna , Estresse Psicológico , Animais , Animais Recém-Nascidos , Feminino , Masculino , Tamanho do Órgão , Distribuição Aleatória , Ratos , Ratos Wistar , Meio Social
14.
Neurosci Lett ; 440(3): 255-9, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18579304

RESUMO

The juvenile brain undergoes marked maturational changes accompanied by major sex hormone changes. In particular, sex differences in neural substrates could underlie male-specific dysfunction in behavioral responses related to the prefrontal cortex. Sex differences in regional metabolic capacity of the cerebral cortex were investigated in juvenile Sprague-Dawley rats. At 6 weeks of age the brains were processed for quantitative histochemistry of cytochrome oxidase, a rate-limiting enzyme in cellular respiration, which is an index of brain metabolic capacity. Quantitative image analysis revealed a main effect of sex with males displaying lower regional metabolic capacity than females in the dorsolateral and orbital prefrontal cortex and in the posterior parietal cortex. In addition, males separated for 6 h/day from their mothers as pups showed greater ambulatory behavior in the novel open field and higher metabolism in the posterior parietal cortex relative to males separated for 15 min/day. This is the first study to show sex differences in brain metabolic capacity in regions such as the prefrontal cortex that may be hypometabolic in juvenile males relative to females.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Caracteres Sexuais , Fatores Etários , Animais , Animais Recém-Nascidos , Comportamento Animal/fisiologia , Córtex Cerebral/anatomia & histologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Comportamento Exploratório/fisiologia , Feminino , Masculino , Ratos , Ratos Sprague-Dawley
15.
Pharmacol Biochem Behav ; 89(3): 456-62, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18313125

RESUMO

The effects of antidepressant drugs on memory have been somewhat ignored, having been considered a mere side effect of these compounds. However, the memory impairment caused by several antidepressants could be considered to form part of their therapeutic effects. Amitriptyline is currently one of the most prescribed tricyclic antidepressants, and exerts marked anticholinergic and antihistaminergic effects. In this study, we evaluated the effects of inhibitory avoidance (IA) learning and acute administration of amitriptyline on brain oxidative metabolism. Brain oxidative metabolism was measured in several limbic regions using cytochrome oxidase (CO) quantitative histochemistry. Amitriptyline produced a clear impairment in the IA task. In animals exposed only to the apparatus, amitriptyline decreased CO activity in nine brain regions, without affecting the remaining regions. In animals that underwent the IA training phase, amitriptyline reduced CO activity in only three of these nine regions. In animals treated with saline, IA acquisition increased CO activity in the medial prefrontal cortex, the prelimbic cortex, and the medial mammillary body, and diminished it in the medial septum and the nucleus basalis of Meynert with respect to animals exposed only to the IA apparatus. In animals treated with amitriptyline, IA acquisition did not modify CO activity in any of these regions, but increased it in the anteromedial nucleus of the thalamus, the diagonal band of Broca, and the dentate gyrus. The results reveal a pattern of changes in brain oxidative metabolism induced by IA training in saline-treated animals that was clearly absent in animals submitted to the same behavioural training but treated with amitriptyline.


Assuntos
Amitriptilina/farmacologia , Antidepressivos Tricíclicos/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Masculino , Camundongos , Oxirredução
16.
Prog Neuropsychopharmacol Biol Psychiatry ; 84(Pt A): 237-249, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29526773

RESUMO

Prenatal and perinatal alcohol exposure caused by maternal alcohol intake during gestation and lactation periods can have long-lasting detrimental effects on the brain development and behaviour of offspring. Children diagnosed with Foetal Alcohol Spectrum Disorders (FASD) display a wide range of cognitive, emotional and motor deficits, together with characteristic morphological abnormalities. Maternal alcohol binge drinking is particularly harmful for foetal and early postnatal brain development, as it involves exposure to high levels of alcohol over short periods of time. However, little is known about the long-term effects of maternal alcohol binge drinking on brain function and behaviour. To address this issue, we used pregnant C57BL/6 female mice with time-limited access to a 20% v/v alcohol solution as a procedure to model alcohol binge drinking during gestation and lactational periods. Male offspring were behaviourally tested during adolescence (30 days) and adulthood (60 days), and baseline neural metabolic capacity of brain regions sensitive to alcohol effects were also evaluated in adult animals from both groups. Our results show that prenatal and postnatal alcohol exposure caused age-dependent changes in spontaneous locomotor activity, increased anxiety-like behaviour and attenuated alcohol-induced conditioned place preference in adults. Also, significant changes in neural metabolic capacity using cytochrome c oxidase (CCO) quantitative histochemistry were found in the hippocampal dentate gyrus, the mammillary bodies, the ventral tegmental area, the lateral habenula and the central lobules of the cerebellum in adult mice with prenatal and postnatal alcohol exposure. In addition, the analysis of interregional CCO activity correlations in alcohol-exposed adult mice showed disrupted functional brain connectivity involving the limbic, brainstem, and cerebellar regions. Finally, increased neurogenesis was found in the dentate gyrus of the hippocampus of alcohol-exposed offspring, suggesting neuroadaptive effects due to early alcohol exposure. Our results demonstrate that maternal binge-like alcohol drinking causes long-lasting effects on motor and emotional-related behaviours associated with impaired neuronal metabolic capacity and altered functional brain connectivity.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/complicações , Encéfalo/fisiopatologia , Transtornos do Espectro Alcoólico Fetal/etiologia , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Animais , Ansiedade/etiologia , Ansiedade/patologia , Ansiedade/fisiopatologia , Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/fisiologia , Distribuição Aleatória
17.
Brain Res Bull ; 74(1-3): 172-7, 2007 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-17683804

RESUMO

The aim of the present study was to provide further evidence on the role of particular subdivisions of the mammillary bodies, anterior thalamus and dorsal hippocampus to contextual and auditory fear conditioning. We used c-Fos expression as a marker of neuronal activation to compare rats that received tone-footshock pairings in a distinctive context (conditioned group) to rats being exposed to both the context and the auditory CS without receiving footshocks (unconditioned group), and naïve rats that were only handled. Fos immunoreactivity was significantly increased only in the anterodorsal thalamic nucleus and the lateral mammillary nucleus of the conditioned group. However, the dorsal hippocampus showed the highest density of c-Fos positive nuclei in the naïve group as compared to the other groups. Together, our data support previous studies indicating a particular involvement of the mammillary bodies and anterior thalamus in fear conditioning.


Assuntos
Condicionamento Clássico/fisiologia , Medo , Expressão Gênica/fisiologia , Hipocampo/fisiologia , Corpos Mamilares/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tálamo/fisiologia , Análise de Variância , Animais , Comportamento Animal , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
18.
Psicothema ; 19(2): 295-301, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17425902

RESUMO

The involvement of the basolateral and the medial amygdala in fear conditioning was evaluated using different markers of neuronal activation. The method described here is a combination of cytochrome oxidase (CO) histochemistry and c-Fos immunocytochemistry on fresh frozen brain sections. Freezing behavior was used as an index of auditory and contextual fear conditioning. As expected, freezing scores were significantly higher in rats exposed to tone-shock pairings in a distinctive environment (conditioned; COND), as compared to rats that did not receive any shocks (UNCD). CO labeling was increased in the basolateral and medial amygdala of the COND group. Conversely, c-Fos expression in the basolateral and medial amygdala was lower in the COND group as compared to the UNCD group. Furthermore, c-Fos expression was particularly high in the medial amygdala of the UNCD group. The data provided by both techniques indicate that these amygdalar nuclei could play different roles on auditory and contextual fear conditioning.


Assuntos
Tonsila do Cerebelo/enzimologia , Tonsila do Cerebelo/imunologia , Condicionamento Psicológico , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Medo , Proteínas Proto-Oncogênicas c-fos/imunologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tonsila do Cerebelo/patologia , Animais , Imuno-Histoquímica , Masculino , Ratos , Ratos Wistar
19.
J Gerontol A Biol Sci Med Sci ; 61(5): 419-26, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16720737

RESUMO

Aging is associated with insulin resistance, which represents a common factor in age-related diseases. We aimed to determine the role of 17beta-estradiol on insulin sensitivity and memory during aging using ovariectomized rats (2-26 months of age) treated with physiological doses of 17beta-estradiol. Our results indicate a lack of effect of 17beta-estradiol replacement on spatial memory assessed in a water maze. Conversely, estradiol treatment improved insulin sensitivity in aging rats. These data imply that relatively low doses of 17beta-estradiol may have beneficial effects on glucose homeostasis due to the protective effects of estrogen. However, estradiol treatment used in the present study did not prevent memory impairment associated with aging.


Assuntos
Envelhecimento/fisiologia , Estradiol/farmacologia , Terapia de Reposição de Estrogênios/métodos , Resistência à Insulina , Análise de Variância , Animais , Modelos Animais de Doenças , Feminino , Técnica Clamp de Glucose , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Ovariectomia , Probabilidade , Ratos , Ratos Wistar , Valores de Referência , Fatores de Risco , Sensibilidade e Especificidade , Estatísticas não Paramétricas
20.
Prog Neuropsychopharmacol Biol Psychiatry ; 30(6): 1020-6, 2006 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16647177

RESUMO

The effects of acute administration of two benzodiazepines and a non-benzodiazepine hypnotic on behavior and brain metabolism were evaluated in rats. After testing the behavioral action of the benzodiazepines on the open field and the elevated plus-maze, the effects of the three drugs on neuronal metabolism of particular limbic regions were measured using cytochrome c oxidase (CO) histochemistry. Diazepam (5 mg/kg i.p.) and alprazolam (0.5 mg/kg i.p.) induced clear anxiolytic effects and a decrease in locomotion, whereas zolpidem (2 mg/kg i.p.) caused an intense hypnotic effect. The anxiolytic effects of alprazolam were distinguishable from diazepam due to the pharmacological and clinical profile of this triazolobenzodiazepine. CO activity decreased significantly in almost all the limbic regions evaluated after zolpidem administration. However, significant prominent decreases in CO activity were found after diazepam treatment in the medial mammillary nucleus, anteroventral thalamus, cingulate cortex, dentate gyrus and basolateral amygdala. Alprazolam caused similar decreases in CO activity, with the exception of the prelimbic and cingulate cortices, where significant increases were detected. In agreement with previous studies using other functional mapping techniques, our results indicate that particular benzodiazepines and non-benzodiazepine hypnotics induce selective changes in brain oxidative metabolism.


Assuntos
Alprazolam/farmacologia , Diazepam/farmacologia , Moduladores GABAérgicos/farmacologia , Hipnóticos e Sedativos/farmacologia , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/metabolismo , Piridinas/farmacologia , Animais , Ansiolíticos , Química Encefálica/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Emoções/efeitos dos fármacos , Imuno-Histoquímica , Sistema Límbico/enzimologia , Masculino , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxirredução , Ratos , Ratos Wistar , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Zolpidem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa