Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 309, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060446

RESUMO

The circadian clock system coordinates metabolic, physiological, and behavioral functions across a 24-h cycle, crucial for adapting to environmental changes. Disruptions in circadian rhythms contribute to major metabolic pathologies like obesity and Type 2 diabetes. Understanding the regulatory mechanisms governing circadian control is vital for identifying therapeutic targets. It is well characterized that chromatin remodeling and 3D structure at genome regulatory elements contributes to circadian transcriptional cycles; yet the impact of rhythmic chromatin topology in metabolic disease is largely unexplored. In this study, we explore how the spatial configuration of the genome adapts to diet, rewiring circadian transcription and contributing to dysfunctional metabolism. We describe daily fluctuations in chromatin contacts between distal regulatory elements of metabolic control genes in livers from lean and obese mice and identify specific lipid-responsive regions recruiting the clock molecular machinery. Interestingly, under high-fat feeding, a distinct interactome for the clock-controlled gene Dbp strategically promotes the expression of distal metabolic genes including Fgf21. Alongside, new chromatin loops between regulatory elements from genes involved in lipid metabolism control contribute to their transcriptional activation. These enhancers are responsive to lipids through CEBPß, counteracting the circadian repressor REVERBa. Our findings highlight the intricate coupling of circadian gene expression to a dynamic nuclear environment under high-fat feeding, supporting a temporally regulated program of gene expression and transcriptional adaptation to diet.


Assuntos
Cromatina , Relógios Circadianos , Ácidos Graxos , Fígado , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade , Animais , Cromatina/metabolismo , Cromatina/genética , Fígado/metabolismo , Camundongos , Relógios Circadianos/genética , Obesidade/metabolismo , Obesidade/genética , Ácidos Graxos/metabolismo , Masculino , Dieta Hiperlipídica/efeitos adversos , Montagem e Desmontagem da Cromatina , Ritmo Circadiano/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Metabolismo dos Lipídeos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
2.
Front Genet ; 15: 1343030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818037

RESUMO

Circadian rhythms, essential 24-hour cycles guiding biological functions, synchronize organisms with daily environmental changes. These rhythms, which are evolutionarily conserved, govern key processes like feeding, sleep, metabolism, body temperature, and endocrine secretion. The central clock, located in the suprachiasmatic nucleus (SCN), orchestrates a hierarchical network, synchronizing subsidiary peripheral clocks. At the cellular level, circadian expression involves transcription factors and epigenetic remodelers, with environmental signals contributing flexibility. Circadian disruption links to diverse diseases, emphasizing the urgency to comprehend the underlying mechanisms. This review explores the communication between the environment and chromatin, focusing on histone post-translational modifications. Special attention is given to the significance of histone methylation in circadian rhythms and metabolic control, highlighting its potential role as a crucial link between metabolism and circadian rhythms. Understanding these molecular intricacies holds promise for preventing and treating complex diseases associated with circadian disruption.

3.
PLoS One ; 19(5): e0298032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820384

RESUMO

The FA/BRCA pathway safeguards DNA replication by repairing interstrand crosslinks (ICL) and maintaining replication fork stability. Chromatin structure, which is in part regulated by histones posttranslational modifications (PTMs), has a role in maintaining genomic integrity through stabilization of the DNA replication fork and promotion of DNA repair. An appropriate balance of PTMs, especially acetylation of histones H4 in nascent chromatin, is required to preserve a stable DNA replication fork. To evaluate the acetylation status of histone H4 at the replication fork of FANCA deficient cells, we compared histone acetylation status at the DNA replication fork of isogenic FANCA deficient and FANCA proficient cell lines by using accelerated native immunoprecipitation of nascent DNA (aniPOND) and in situ protein interactions in the replication fork (SIRF) assays. We found basal hypoacetylation of multiple residues of histone H4 in FA replication forks, together with increased levels of Histone Deacetylase 1 (HDAC1). Interestingly, high-dose short-term treatment with mitomycin C (MMC) had no effect over H4 acetylation abundance at the replication fork. However, chemical inhibition of histone deacetylases (HDAC) with Suberoylanilide hydroxamic acid (SAHA) induced acetylation of the FANCA deficient DNA replication forks to levels comparable to their isogenic control counterparts. This forced permanence of acetylation impacted FA cells homeostasis by inducing DNA damage and promoting G2 cell cycle arrest. Altogether, this caused reduced RAD51 foci formation and increased markers of replication stress, including phospho-RPA-S33. Hypoacetylation of the FANCA deficient replication fork, is part of the cellular phenotype, the perturbation of this feature by agents that prevent deacetylation, such as SAHA, have a deleterious effect over the delicate equilibrium they have reached to perdure despite a defective FA/BRCA pathway.


Assuntos
Dano ao DNA , Replicação do DNA , Proteína do Grupo de Complementação A da Anemia de Fanconi , Histonas , Histonas/metabolismo , Humanos , Replicação do DNA/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Mitomicina/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Vorinostat/farmacologia , Ácidos Hidroxâmicos/farmacologia
4.
Nat Commun ; 14(1): 1685, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973248

RESUMO

The circadian clock is an endogenous time-tracking system that anticipates daily environmental changes. Misalignment of the clock can cause obesity, which is accompanied by reduced levels of the clock-controlled, rhythmic metabolite NAD+. Increasing NAD+ is becoming a therapy for metabolic dysfunction; however, the impact of daily NAD+ fluctuations remains unknown. Here, we demonstrate that time-of-day determines the efficacy of NAD+ treatment for diet-induced metabolic disease in mice. Increasing NAD+ prior to the active phase in obese male mice ameliorated metabolic markers including body weight, glucose and insulin tolerance, hepatic inflammation and nutrient sensing pathways. However, raising NAD+ immediately before the rest phase selectively compromised these responses. Remarkably, timed NAD+ adjusted circadian oscillations of the liver clock until completely inverting its oscillatory phase when increased just before the rest period, resulting in misaligned molecular and behavioral rhythms in male and female mice. Our findings unveil the time-of-day dependence of NAD+-based therapies and support a chronobiology-based approach.


Assuntos
Relógios Circadianos , Doenças Metabólicas , Camundongos , Masculino , Feminino , Animais , Ritmo Circadiano/fisiologia , NAD/metabolismo , Dieta , Doenças Metabólicas/metabolismo , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa