Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Neurosci ; 18: 1237245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680452

RESUMO

We present CiftiStorm, an electrophysiological source imaging (ESI) pipeline incorporating recently developed methods to improve forward and inverse solutions. The CiftiStorm pipeline produces Human Connectome Project (HCP) and megconnectome-compliant outputs from dataset inputs with varying degrees of spatial resolution. The input data can range from low-sensor-density electroencephalogram (EEG) or magnetoencephalogram (MEG) recordings without structural magnetic resonance imaging (sMRI) to high-density EEG/MEG recordings with an HCP multimodal sMRI compliant protocol. CiftiStorm introduces a numerical quality control of the lead field and geometrical corrections to the head and source models for forward modeling. For the inverse modeling, we present a Bayesian estimation of the cross-spectrum of sources based on multiple priors. We facilitate ESI in the T1w/FSAverage32k high-resolution space obtained from individual sMRI. We validate this feature by comparing CiftiStorm outputs for EEG and MRI data from the Cuban Human Brain Mapping Project (CHBMP) acquired with technologies a decade before the HCP MEG and MRI standardized dataset.

2.
Sci Rep ; 13(1): 11466, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454235

RESUMO

Identifying the functional networks underpinning indirectly observed processes poses an inverse problem for neurosciences or other fields. A solution of such inverse problems estimates as a first step the activity emerging within functional networks from EEG or MEG data. These EEG or MEG estimates are a direct reflection of functional brain network activity with a temporal resolution that no other in vivo neuroimage may provide. A second step estimating functional connectivity from such activity pseudodata unveil the oscillatory brain networks that strongly correlate with all cognition and behavior. Simulations of such MEG or EEG inverse problem also reveal estimation errors of the functional connectivity determined by any of the state-of-the-art inverse solutions. We disclose a significant cause of estimation errors originating from misspecification of the functional network model incorporated into either inverse solution steps. We introduce the Bayesian identification of a Hidden Gaussian Graphical Spectral (HIGGS) model specifying such oscillatory brain networks model. In human EEG alpha rhythm simulations, the estimation errors measured as ROC performance do not surpass 2% in our HIGGS inverse solution and reach 20% in state-of-the-art methods. Macaque simultaneous EEG/ECoG recordings provide experimental confirmation for our results with 1/3 times larger congruence according to Riemannian distances than state-of-the-art methods.


Assuntos
Mapeamento Encefálico , Encéfalo , Animais , Humanos , Teorema de Bayes , Mapeamento Encefálico/métodos , Eletrocorticografia , Ritmo alfa , Macaca , Eletroencefalografia/métodos , Magnetoencefalografia/métodos , Modelos Neurológicos
3.
Sci Data ; 10(1): 554, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612297

RESUMO

In this work, we present a dataset that combines functional magnetic imaging (fMRI) and electroencephalography (EEG) to use as a resource for understanding human brain function in these two imaging modalities. The dataset can also be used for optimizing preprocessing methods for simultaneously collected imaging data. The dataset includes simultaneously collected recordings from 22 individuals (ages: 23-51) across various visual and naturalistic stimuli. In addition, physiological, eye tracking, electrocardiography, and cognitive and behavioral data were collected along with this neuroimaging data. Visual tasks include a flickering checkerboard collected outside and inside the MRI scanner (EEG-only) and simultaneous EEG-fMRI recordings. Simultaneous recordings include rest, the visual paradigm Inscapes, and several short video movies representing naturalistic stimuli. Raw and preprocessed data are openly available to download. We present this dataset as part of an effort to provide open-access data to increase the opportunity for discoveries and understanding of the human brain and evaluate the correlation between electrical brain activity and blood oxygen level-dependent (BOLD) signals.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Adulto , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Encéfalo/diagnóstico por imagem , Eletrocardiografia , Eletroencefalografia
4.
Brain Sci ; 13(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37239225

RESUMO

BACKGROUND: Preterm birth is one of the world's critical health problems, with an incidence of 5% to 18% of living newborns according to various countries. White matter injuries due to preoligodendrocytes deficits cause hypomyelination in children born preterm. Preterm infants also have multiple neurodevelopmental sequelae due to prenatal and perinatal risk factors for brain damage. The purpose of this work was to explore the effects of the brain risk factors and MRI volumes and abnormalities on the posterior motor and cognitive development at 3 years of age. METHODS: A total of 166 preterm infants were examined before 4 months and clinical and MRI evaluations were performed. MRI showed abnormal findings in 89% of the infants. Parents of all infants were invited to receive the Katona neurohabilitation treatment. The parents of 128 infants accepted and received Katona's neurohabilitation treatment. The remaining 38 infants did not receive treatment for a variety of reasons. At the three-year follow-up, Bayley's II Mental Developmental Index (MDI) and the Psychomotor Developmental Index (PDI) were compared between treated and untreated subjects. RESULTS: The treated children had higher values of both indices than the untreated. Linear regression showed that the antecedents of placenta disorders and sepsis as well as volumes of the corpus callosum and of the left lateral ventricle significantly predicted both MDI and PDI, while Apgar < 7 and volume of the right lateral ventricle predicted the PDI. CONCLUSIONS: (1) The results indicate that preterm infants who received Katona's neurohabilitation procedure exhibited significantly better outcomes at 3 years of age compared to those who did not receive the treatment. (2) The presence of sepsis and the volumes of the corpus callosum and lateral ventricles at 3-4 months were significant predictors of the outcome at 3 years of age.

5.
Front Neurosci ; 17: 978527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008210

RESUMO

Oscillatory processes at all spatial scales and on all frequencies underpin brain function. Electrophysiological Source Imaging (ESI) is the data-driven brain imaging modality that provides the inverse solutions to the source processes of the EEG, MEG, or ECoG data. This study aimed to carry out an ESI of the source cross-spectrum while controlling common distortions of the estimates. As with all ESI-related problems under realistic settings, the main obstacle we faced is a severely ill-conditioned and high-dimensional inverse problem. Therefore, we opted for Bayesian inverse solutions that posited a priori probabilities on the source process. Indeed, rigorously specifying both the likelihoods and a priori probabilities of the problem leads to the proper Bayesian inverse problem of cross-spectral matrices. These inverse solutions are our formal definition for cross-spectral ESI (cESI), which requires a priori of the source cross-spectrum to counter the severe ill-condition and high-dimensionality of matrices. However, inverse solutions for this problem were NP-hard to tackle or approximated within iterations with bad-conditioned matrices in the standard ESI setup. We introduce cESI with a joint a priori probability upon the source cross-spectrum to avoid these problems. cESI inverse solutions are low-dimensional ones for the set of random vector instances and not random matrices. We achieved cESI inverse solutions through the variational approximations via our Spectral Structured Sparse Bayesian Learning (ssSBL) algorithm https://github.com/CCC-members/Spectral-Structured-Sparse-Bayesian-Learning. We compared low-density EEG (10-20 system) ssSBL inverse solutions with reference cESIs for two experiments: (a) high-density MEG that were used to simulate EEG and (b) high-density macaque ECoG that were recorded simultaneously with EEG. The ssSBL resulted in two orders of magnitude with less distortion than the state-of-the-art ESI methods. Our cESI toolbox, including the ssSBL method, is available at https://github.com/CCC-members/BC-VARETA_Toolbox.

6.
Front Neurol ; 13: 1009574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530633

RESUMO

Introduction: Age is the main risk factor for the development of neurocognitive disorders, with Alzheimer's disease being the most common. Its physiopathological features may develop decades before the onset of clinical symptoms. Quantitative electroencephalography (qEEG) is a promising and cost-effective tool for the prediction of cognitive decline in healthy older individuals that exhibit an excess of theta activity. The aim of the present study was to evaluate the feasibility of brain connectivity variable resolution electromagnetic tomography (BC-VARETA), a novel source localization algorithm, as a potential tool to assess brain connectivity with 19-channel recordings, which are common in clinical practice. Methods: We explored differences in terms of functional connectivity among the nodes of the default mode network between two groups of healthy older participants, one of which exhibited an EEG marker of risk for cognitive decline. Results: The risk group exhibited increased levels of delta, theta, and beta functional connectivity among nodes of the default mode network, as well as reversed directionality patterns of connectivity among nodes in every frequency band when compared to the control group. Discussion: We propose that an ongoing pathological process may be underway in healthy elderly individuals with excess theta activity in their EEGs, which is further evidenced by changes in their connectivity patterns. BC-VARETA implemented on 19-channels EEG recordings appears to be a promising tool to detect dysfunctions at the connectivity level in clinical settings.

7.
Biomed Res Int ; 2015: 916356, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26558287

RESUMO

This paper describes an exploratory technique to identify mild dementia by assessing the degree of speech deficits. A total of twenty participants were used for this experiment, ten patients with a diagnosis of mild dementia and ten participants like healthy control. The audio session for each subject was recorded following a methodology developed for the present study. Prosodic features in patients with mild dementia and healthy elderly controls were measured using automatic prosodic analysis on a reading task. A novel method was carried out to gather twelve prosodic features over speech samples. The best classification rate achieved was of 85% accuracy using four prosodic features. The results attained show that the proposed computational speech analysis offers a viable alternative for automatic identification of dementia features in elderly adults.


Assuntos
Demência/diagnóstico , Processamento de Sinais Assistido por Computador , Fala/classificação , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Demência/fisiopatologia , Feminino , Humanos , Masculino , Espectrografia do Som , Acústica da Fala , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa