Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 20(10): 3177-90, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24817483

RESUMO

Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter-height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter-height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development.


Assuntos
Biomassa , Monitoramento Ambiental/métodos , Modelos Teóricos , Árvores/fisiologia , Clima Tropical , Carbono , Modelos Biológicos , Análise de Regressão , Gravidade Específica , Madeira/química
2.
Ecol Appl ; 24(4): 680-98, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24988768

RESUMO

Tropical forests play a vital role in the global carbon cycle, but the amount of carbon they contain and its spatial distribution remain uncertain. Recent studies suggest that once tree height is accounted for in biomass calculations, in addition to diameter and wood density, carbon stock estimates are reduced in many areas. However, it is possible that larger crown sizes might offset the reduction in biomass estimates in some forests where tree heights are lower because even comparatively short trees develop large, well-lit crowns in or above the forest canopy. While current allometric models and theory focus on diameter, wood density, and height, the influence of crown size and structure has not been well studied. To test the extent to which accounting for crown parameters can improve biomass estimates, we harvested and weighed 51 trees (11-169 cm diameter) in southwestern Amazonia where no direct biomass measurements have been made. The trees in our study had nearly half of total aboveground biomass in the branches (44% +/- 2% [mean +/- SE]), demonstrating the importance of accounting for tree crowns. Consistent with our predictions, key pantropical equations that include height, but do not account for crown dimensions, underestimated the sum total biomass of all 51 trees by 11% to 14%, primarily due to substantial underestimates of many of the largest trees. In our models, including crown radius greatly improves performance and reduces error, especially for the largest trees. In addition, over the full data set, crown radius explained more variation in aboveground biomass (10.5%) than height (6.0%). Crown form is also important: Trees with a monopodial architectural type are estimated to have 21-44% less mass than trees with other growth patterns. Our analysis suggests that accounting for crown allometry would substantially improve the accuracy of tropical estimates of tree biomass and its distribution in primary and degraded forests.


Assuntos
Biomassa , Árvores/fisiologia , Clima Tropical , Agricultura Florestal , Modelos Biológicos , Tecnologia de Sensoriamento Remoto
3.
Ambio ; 53(10): 1492-1504, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38822967

RESUMO

Most people in rural sub-Saharan Africa lack access to electricity and rely on traditional, inefficient, and polluting cooking solutions that have adverse impacts on both human health and the environment. Here, we propose a novel integrated agroforestry-bioenergy system that combines sustainable biomass production in sequential agroforestry systems with biomass-based cleaner cooking solutions and rural electricity production in small-scale combined heat and power plants and estimate the biophysical system outcomes. Despite conservative assumptions, we demonstrate that on-farm biomass production can cover the household's fuelwood demand for cooking and still generate a surplus of woody biomass for electricity production via gasification. Agroforestry and biochar soil amendments should increase agricultural productivity and food security. In addition to enhanced energy security, the proposed system should also contribute to improving cooking conditions and health, enhancing soil fertility and food security, climate change mitigation, gender equality, and rural poverty reduction.


Assuntos
Agricultura , Segurança Alimentar , Agricultura Florestal , População Rural , África Subsaariana , Agricultura/métodos , Agricultura Florestal/métodos , Biomassa , Culinária , Humanos , Carvão Vegetal
4.
Sci Rep ; 14(1): 16772, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039098

RESUMO

Secondary tropical forests are at the forefront of deforestation pressures. They store large amounts of carbon, which, if compensated for to avoid net emissions associated with conversion to non-forest uses, may help advance tropical forest conservation. We measured above- and below-ground carbon stocks down to 1 m soil depth across a secondary forest and in oil palm plantations in Malaysia. We calculated net carbon losses when converting secondary forests to oil palm plantations and estimated payments to avoid net emissions arising from land conversion to a 22-year oil palm rotation, based on land opportunity costs per hectare. We explored how estimates would vary between forests by also extracting carbon stock data for primary forest from the literature. When tree and soil carbon was accounted for, payments of US$18-51 tCO2-1 for secondary forests and US$14-40 tCO2-1 for primary forest would equal opportunity costs associated with oil palm plantations per hectare. If detailed assessments of soil carbon were not accounted for, payments to offset opportunity costs would need to be considerably higher for secondary forests (US$28-80 tCO2-1). These results show that assessment of carbon stocks down to 1 m soil depth in tropical forests can substantially influence the estimated value of avoided-emission payments.


Assuntos
Carbono , Conservação dos Recursos Naturais , Florestas , Solo , Clima Tropical , Solo/química , Carbono/análise , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Árvores , Malásia
6.
Nat Ecol Evol ; 3(12): 1754-1761, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31712699

RESUMO

Higher levels of taxonomic and evolutionary diversity are expected to maximize ecosystem function, yet their relative importance in driving variation in ecosystem function at large scales in diverse forests is unknown. Using 90 inventory plots across intact, lowland, terra firme, Amazonian forests and a new phylogeny including 526 angiosperm genera, we investigated the association between taxonomic and evolutionary metrics of diversity and two key measures of ecosystem function: aboveground wood productivity and biomass storage. While taxonomic and phylogenetic diversity were not important predictors of variation in biomass, both emerged as independent predictors of wood productivity. Amazon forests that contain greater evolutionary diversity and a higher proportion of rare species have higher productivity. While climatic and edaphic variables are together the strongest predictors of productivity, our results show that the evolutionary diversity of tree species in diverse forest stands also influences productivity. As our models accounted for wood density and tree size, they also suggest that additional, unstudied, evolutionarily correlated traits have significant effects on ecosystem function in tropical forests. Overall, our pan-Amazonian analysis shows that greater phylogenetic diversity translates into higher levels of ecosystem function: tropical forest communities with more distantly related taxa have greater wood productivity.


Assuntos
Ecossistema , Madeira , Florestas , Filogenia , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa