Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38854025

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by obliterative vascular remodeling of the small pulmonary arteries (PA) and progressive increase in pulmonary vascular resistance (PVR) leading to right ventricular (RV) failure. Although several drugs are approved for the treatment of PAH, mortality remains high. Accumulating evidence supports a pathological function of integrins in vessel remodeling, which are gaining renewed interest as drug targets. However, their role in PAH remains largely unexplored. We found that the arginine-glycine-aspartate (RGD)-binding integrin α5ß1 is upregulated in PA endothelial cells (PAEC) and PA smooth muscle cells (PASMC) from PAH patients and remodeled PAs from animal models. Blockade of the integrin α5ß1 or depletion of the α5 subunit resulted in mitotic defects and inhibition of the pro-proliferative and apoptosis-resistant phenotype of PAH cells. Using a novel small molecule integrin inhibitor and neutralizing antibodies, we demonstrated that α5ß1 integrin blockade attenuates pulmonary vascular remodeling and improves hemodynamics and RV function in multiple preclinical models. Our results provide converging evidence to consider α5ß1 integrin inhibition as a promising therapy for pulmonary hypertension. One sentence summary: The α5ß1 integrin plays a crucial role in pulmonary vascular remodeling.

2.
Nat Commun ; 15(1): 6503, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090095

RESUMO

The COVID-19 pandemic has led to the deaths of millions of people and severe global economic impacts. Small molecule therapeutics have played an important role in the fight against SARS-CoV-2, the virus responsible for COVID-19, but their efficacy has been limited in scope and availability, with many people unable to access their benefits, and better options are needed. EDP-235 is specifically designed to inhibit the SARS-CoV-2 3CLpro, with potent nanomolar activity against all SARS-CoV-2 variants to date, as well as clinically relevant human and zoonotic coronaviruses. EDP-235 maintains potency against variants bearing mutations associated with nirmatrelvir resistance. Additionally, EDP-235 demonstrates a ≥ 500-fold selectivity index against multiple host proteases. In a male Syrian hamster model of COVID-19, EDP-235 suppresses SARS-CoV-2 replication and viral-induced hamster lung pathology. In a female ferret model, EDP-235 inhibits production of SARS-CoV-2 infectious virus and RNA at multiple anatomical sites. Furthermore, SARS-CoV-2 contact transmission does not occur when naïve ferrets are co-housed with infected, EDP-235-treated ferrets. Collectively, these results demonstrate that EDP-235 is a broad-spectrum coronavirus inhibitor with efficacy in animal models of primary infection and transmission.


Assuntos
Antivirais , COVID-19 , Proteases 3C de Coronavírus , SARS-CoV-2 , Replicação Viral , Animais , Cricetinae , Feminino , Humanos , Masculino , Antivirais/farmacologia , Chlorocebus aethiops , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , COVID-19/virologia , COVID-19/transmissão , Tratamento Farmacológico da COVID-19 , Modelos Animais de Doenças , Furões , Lactamas , Leucina , Pulmão/virologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Mesocricetus , Nitrilas , Compostos Orgânicos , Pandemias/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Pneumonia Viral/transmissão , Pneumonia Viral/prevenção & controle , Prolina , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Células Vero , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa