Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Biol ; 214(Pt 20): 3455-66, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21957109

RESUMO

Studies of limb bone loading in terrestrial mammals have typically found anteroposterior bending to be the primary loading regime, with torsion contributing minimally. However, previous studies have focused on large, cursorial eutherian species in which the limbs are held essentially upright. Recent in vivo strain data from the Virginia opossum (Didelphis virginiana), a marsupial that uses a crouched rather than an upright limb posture, have indicated that its femur experiences appreciable torsion during locomotion as well as strong mediolateral bending. The elevated femoral torsion and strong mediolateral bending observed in D. virginiana might result from external forces such as a medial inclination of the ground reaction force (GRF), internal forces deriving from a crouched limb posture, or a combination of these factors. To evaluate the mechanism underlying the loading regime of opossum femora, we filmed D. virginiana running over a force platform, allowing us to measure the magnitude of the GRF and its three-dimensional orientation relative to the limb, facilitating estimates of limb bone stresses. This three-dimensional analysis also allows evaluations of muscular forces, particularly those of hip adductor muscles, in the appropriate anatomical plane to a greater degree than previous two-dimensional analyses. At peak GRF and stress magnitudes, the GRF is oriented nearly vertically, inducing a strong abductor moment at the hip that is countered by adductor muscles on the medial aspect of the femur that place this surface in compression and induce mediolateral bending, corroborating and explaining loading patterns that were identified in strain analyses. The crouched orientation of the femur during stance in opossums also contributes to levels of femoral torsion as high as those seen in many reptilian taxa. Femoral safety factors were as high as those of non-avian reptiles and greater than those of upright, cursorial mammals, primarily because the load magnitudes experienced by opossums are lower than those of most mammals. Thus, the evolutionary transition from crouched to upright posture in mammalian ancestors may have been accompanied by an increase in limb bone load magnitudes.


Assuntos
Didelphis/fisiologia , Fêmur/fisiologia , Locomoção/fisiologia , Torção Mecânica , Animais , Fenômenos Biomecânicos/fisiologia , Força Compressiva/fisiologia , Fêmur/anatomia & histologia , Membro Posterior/anatomia & histologia , Membro Posterior/fisiologia , Articulações/fisiologia , Músculos/anatomia & histologia , Músculos/fisiologia , Estresse Fisiológico , Resistência à Tração/fisiologia , Virginia , Suporte de Carga/fisiologia
2.
J Exp Biol ; 214(Pt 15): 2631-40, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21753057

RESUMO

Terrestrial locomotion can impose substantial loads on vertebrate limbs. Previous studies have shown that limb bones from cursorial species of eutherian mammals experience high bending loads with minimal torsion, whereas the limb bones of non-avian reptiles (and amphibians) exhibit considerable torsion in addition to bending. It has been hypothesized that these differences in loading regime are related to the difference in limb posture between upright mammals and sprawling reptiles, and that the loading patterns observed in non-avian reptiles may be ancestral for tetrapod vertebrates. To evaluate whether non-cursorial mammals show loading patterns more similar to those of sprawling lineages, we measured in vivo strains in the femur during terrestrial locomotion of the Virginia opossum (Didelphis virginiana), a marsupial that uses more crouched limb posture than most mammals from which bone strains have been recorded, and which belongs to a clade phylogenetically between reptiles and the eutherian mammals studied previously. The presence of substantial torsion in the femur of opossums, similar to non-avian reptiles, would suggest that this loading regime likely reflects an ancestral condition for tetrapod limb bone design. Strain recordings indicate the presence of both bending and appreciable torsion (shear strain: 419.1 ± 212.8 µÎµ) in the opossum femur, with planar strain analyses showing neutral axis orientations that placed the lateral aspect of the femur in tension at the time of peak strains. Such mediolateral bending was unexpected for a mammal running with near-parasagittal limb kinematics. Shear strains were similar in magnitude to peak compressive axial strains, with opossum femora experiencing similar bending loads but higher levels of torsion compared with most previously studied mammals. Analyses of peak femoral strains led to estimated safety factor ranges of 5.1-7.2 in bending and 5.5-7.3 in torsion, somewhat higher than typical mammalian values for bending, but approaching typical reptilian values for shear. Loading patterns of opossum limb bones therefore appear intermediate in some respects between those of eutherian mammals and non-avian reptiles, providing further support for hypotheses that high torsion and elevated limb bone safety factors may represent persistent ancestral conditions in the evolution of tetrapod limb bone loading and design.


Assuntos
Didelphis/fisiologia , Fêmur/fisiologia , Membro Posterior/fisiologia , Animais , Evolução Biológica , Fenômenos Biomecânicos , Feminino , Locomoção , Masculino , Músculo Esquelético/fisiologia , Filogenia , South Carolina , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa