RESUMO
Monogalactosyldiacylglycerol (MGDG) is the main lipid constituent of thylakoids and a structural component of photosystems and photosynthesis-related proteo-lipid complexes in green tissues. Previously reported changes in MGDG abundance upon stress treatments are hypothesized to reflect mobilization of MGDG-based polyunsaturated lipid intermediates to maintain extraplastidial membrane integrity. While exchange of lipid intermediates between compartmental membranes is well documented, physiological consequences of mobilizing an essential thylakoid lipid, such as MGDG, for an alternative purpose are not well understood. Arabidopsis seedlings exposed to mild (50 mM) salt treatment displayed significantly increased abundance of both MGDG and the extraplastidial lipid, phosphatidylcholine (PC). Interestingly, similar increases in MGDG and PC were observed in Arabidopsis fad3 mutant seedlings defective in endoplasmic reticulum (ER)-localized linolenic acid formation, in which compensatory plastid-to-ER-directed mobilization of linolenic acid-containing intermediates takes place. The postulated (salt) or evident (fad3) plastid-ER exchange of intermediates concurred with altered thylakoid function according to parameters of photosynthetic performance. While salt treatment of wild-type seedlings inhibited photosynthetic parameters in a dose-dependent manner, interestingly, untreated fad3 mutants did not show overall reduced photosynthetic quantum yield. By contrast, we observed a reduction specifically of non-photochemical quenching (NPQ) under high light, representing only part of observed salt effects. The decreased NPQ in the fad3 mutant was accompanied by reduced activity of the xanthophyll cycle, leading to a reduced concentration of the NPQ-effective pigment zeaxanthin. The findings suggest that altered ER-located fatty acid unsaturation and ensuing inter-organellar compensation impacts on the function of specific thylakoid enzymes, rather than globally affecting thylakoid function.
RESUMO
In the present study, low concentrations of the very mild detergent n-dodecyl-α-d-maltoside in conjunction with sucrose gradient ultracentrifugation were used to prepare fucoxanthin chlorophyll protein (FCP) complexes of the centric diatom Thalassiosira pseudonana. Two main FCP fractions were observed in the sucrose gradients, one in the upper part and one at high sucrose concentrations in the lower part of the gradient. The first fraction was dominated by the 18 kDa FCP protein band in SDS-gels. Since this fraction also contained other protein bands, it was designated as fraction enriched in FCP-A complex. The second fraction contained mainly the 21 kDa FCP band, which is typical for the FCP-B complex. Determination of the lipid composition showed that both FCP fractions contained monogalactosyl diacylglycerol as the main lipid followed by the second galactolipid of the thylakoid membrane, namely digalactosyl diacylglycerol. The negatively charged lipids sulfoquinovosyl diacylglycerol and phosphatidyl glycerol were also present in both fractions in pronounced concentrations. With respect to the pigment composition, the fraction enriched in FCP-A contained a higher amount of the xanthophyll cycle pigments diadinoxanthin (DD) and diatoxanthin (Dt), whereas the FCP-B fraction was characterized by a lower ratio of xanthophyll cycle pigments to the light-harvesting pigment fucoxanthin. Protein analysis by mass spectrometry revealed that in both FCP fractions the xanthophyll cycle enzyme diadinoxanthin de-epoxidase (DDE) was present. In addition, the analysis showed an enrichment of DDE in the fraction enriched in FCP-A but only a very low amount of DDE in the FCP-B fraction. In-vitro de-epoxidation assays, employing the isolated FCP complexes, were characterized by an inefficient conversion of DD to Dt. However, in line with the heterogeneous DDE distribution, the fraction enriched in FCP-A showed a more pronounced DD de-epoxidation compared with the FCP-B.
Assuntos
Diatomáceas , Diatomáceas/metabolismo , Proteínas de Ligação à Clorofila/metabolismo , Diglicerídeos/metabolismo , XantofilasRESUMO
MAIN CONCLUSION: The compatible solute sucrose reduces the efficiency of the enzymatic de-epoxidation of violaxanthin, probably by a direct effect on the protein parts of violaxanthin de-epoxidase which protrude from the lipid phase of the thylakoid membrane. The present study investigates the influence of the compatible solute sucrose on the violaxanthin cycle of higher plants in intact thylakoids and in in vitro enzyme assays with the isolated enzyme violaxanthin de-epoxidase at temperatures of 30 and 10 °C, respectively. In addition, the influence of sucrose on the lipid organization of thylakoid membranes and the MGDG phase in the in vitro assays is determined. The results show that sucrose leads to a pronounced inhibition of violaxanthin de-epoxidation both in intact thylakoid membranes and the enzyme assays. In general, the inhibition is similar at 30 and 10 °C. With respect to the lipid organization only minor changes can be seen in thylakoid membranes at 30 °C in the presence of sucrose. However, sucrose seems to stabilize the thylakoid membranes at lower temperatures and at 10 °C a comparable membrane organization to that at 30 °C can be observed, whereas control thylakoids show a significantly different membrane organization at the lower temperature. The MGDG phase in the in vitro assays is not substantially affected by the presence of sucrose or by changes of the temperature. We conclude that the presence of sucrose and the increased viscosity of the reaction buffers stabilize the protein part of the enzyme violaxanthin de-epoxidase, thereby decreasing the dynamic interactions between the catalytic site and the substrate violaxanthin. This indicates that sucrose interacts with those parts of the enzyme which are accessible at the membrane surface of the lipid phase of the thylakoid membrane or the MGDG phase of the in vitro enzyme assays.
Assuntos
Galactolipídeos , Tilacoides , Sacarose , XantofilasRESUMO
BACKGROUND: Although our knowledge about diatom photosynthesis has made huge progress over the last years, many aspects about their photosynthetic apparatus are still enigmatic. According to published data, the spatial organization as well as the biochemical composition of diatom thylakoid membranes is significantly different from that of higher plants. RESULTS: In this study the pigment protein complexes of the diatom Thalassiosira pseudonana were isolated by anion exchange chromatography. A step gradient was used for the elution process, yielding five well-separated pigment protein fractions which were characterized in detail. The isolation of photosystem (PS) core complex fractions, which contained fucoxanthin chlorophyll proteins (FCPs), enabled the differentiation between different FCP complexes: FCP complexes which were more closely associated with the PSI and PSII core complexes and FCP complexes which built-up the peripheral antenna. Analysis by mass spectrometry showed that the FCP complexes associated with the PSI and PSII core complexes contained various Lhcf proteins, including Lhcf1, Lhcf2, Lhcf4, Lhcf5, Lhcf6, Lhcf8 and Lhcf9 proteins, while the peripheral FCP complexes were exclusively composed of Lhcf8 and Lhcf9. Lhcr proteins, namely Lhcr1, Lhcr3 and Lhcr14, were identified in fractions containing subunits of the PSI core complex. Lhcx1, Lhcx2 and Lhcx5 proteins co-eluted with PSII protein subunits. The first fraction contained an additional Lhcx protein, Lhcx6_1, and was furthermore characterized by high concentrations of photoprotective xanthophyll cycle pigments. CONCLUSION: The results of the present study corroborate existing data, like the observation of a PSI-specific antenna complex in diatoms composed of Lhcr proteins. They complement other data, like e.g. on the protein composition of the 21 kDa FCP band or the Lhcf composition of FCPa and FCPb complexes. They also provide interesting new information, like the presence of the enzyme diadinoxanthin de-epoxidase in the Lhcx-containing PSII fraction, which might be relevant for the process of non-photochemical quenching. Finally, the high negative charge of the main FCP fraction may play a role in the organization and structure of the native diatom thylakoid membrane. Thus, the results present an important contribution to our understanding of the complex nature of the diatom antenna system.
Assuntos
Proteínas de Ligação à Clorofila/metabolismo , Diatomáceas/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Pigmentos Biológicos/isolamento & purificação , Proteínas de Ligação à Clorofila/genética , Cromatografia por Troca Iônica , Diatomáceas/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genéticaRESUMO
Diatoms contribute about 20-25% to the global marine productivity and are successful autotrophic players in all aquatic ecosystems, which raises the question whether this performance is caused by differences in their photosynthetic apparatus. Photo-CIDNP MAS NMR presents a unique tool to obtain insights into the reaction centres of photosystems (PS), by selective enhancement of NMR signals from both, the electron donor and the primary electron acceptor molecules. Here, we present the first observation of the solid-state photo-CIDNP effect in the pennate diatoms. In comparison to plant PSs, similar spectral patterns have been observed for PS I at 9.4 T and PS II at 4.7 T in the PSs of Phaeodactylum tricornutum. Studies at different magnetic fields reveal a surprising sign change of the 13C photo-CIDNP MAS NMR signals indicating an alternative arrangement of cofactors which allows to quench the Chl a donor triplet state in contrast to the situation in plant PS II. This unusual quenching mechanism is related to a carotenoid molecule in close vicinity to the Chl a donor. In addition to the photo-CIDNP MAS NMR signals arising from the donor and the primary electron acceptor cofactors, a complete set of signals of the imidazole ring ligating to the magnesium of Chl a can be observed.
Assuntos
Diatomáceas/fisiologia , Espectroscopia de Ressonância Magnética , Complexo de Proteína do Fotossistema II/metabolismo , Isótopos de Carbono/análise , Campos Magnéticos , Isótopos de Nitrogênio/análise , FotossínteseRESUMO
The importance of diadinoxanthin (Ddx) de-epoxidation in the short-term modulation of the temperature effect on photosynthetic membranes of the diatom Phaeodactylum tricornutum was demonstrated by electron paramagnetic resonance (EPR), Laurdan fluorescence spectroscopy, and high-performance liquid chromatography. The 5-SASL spin probe employed for the EPR measurements and Laurdan provided information about the membrane area close to the polar head groups of the membrane lipids, whereas with the 16-SASL spin probe, the hydrophobic core, where the fatty acid residues are located, was probed. The obtained results indicate that Ddx de-epoxidation induces a two component mechanism in the short-term regulation of the membrane fluidity of diatom thylakoids during changing temperatures. One component has been termed the "dynamic effect" and the second the "stable effect" of Ddx de-epoxidation. The "dynamic effect" includes changes of the membrane during the time course of de-epoxidation whereas the "stable effect" is based on the rigidifying properties of Dtx. The combination of both effects results in a temporary increase of the rigidity of both peripheral and internal parts of the membrane whereas the persistent increase of the rigidity of the hydrophobic core of the membrane is solely based on the "stable effect."
Assuntos
Diatomáceas/metabolismo , Tilacoides/metabolismo , Xantofilas/metabolismo , Clorofila A/metabolismo , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância de Spin Eletrônica , Compostos de Epóxi/metabolismo , Fotossíntese , Espectrometria de Fluorescência , TemperaturaRESUMO
BACKGROUND: The preparation of functional thylakoid membranes from diatoms with a silica cell wall is still a largely unsolved challenge. Therefore, an optimized protocol for the isolation of oxygen evolving thylakoid membranes of the centric diatom Cyclotella meneghiniana has been developed. The buffer used for the disruption of the cells was supplemented with polyethylene glycol based on its stabilizing effect on plastidic membranes. Disruption of the silica cell walls was performed in a French Pressure cell and subsequent linear sorbitol density gradient centrifugation was used to isolate the thylakoid membrane fraction. RESULTS: Spectroscopic characterization of the thylakoids by absorption and 77 K fluorescence spectroscopy showed that the photosynthetic pigment protein complexes in the isolated thylakoid membranes were intact. This was supported by oxygen evolution measurements which demonstrated high electron transport rates in the presence of the artificial electron acceptor DCQB. High photosynthetic activity of photosystem II was corroborated by the results of fast fluorescence induction measurements. In addition to PSII and linear electron transport, indications for a chlororespiratory electron transport were observed in the isolated thylakoid membranes. Photosynthetic electron transport also resulted in the establishment of a proton gradient as evidenced by the quenching of 9-amino-acridine fluorescence. Because of their ability to build-up a light-driven proton gradient, de-epoxidation of diadinoxanthin to diatoxanthin and diatoxanthin-dependent non-photochemical quenching of chlorophyll fluorescence could be observed for the first time in isolated thylakoid membranes of diatoms. However, the ∆pH, diadinoxanthin de-epoxidation and diatoxanthin-dependent NPQ were weak compared to intact diatom cells or isolated thylakoids of higher plants. CONCLUSIONS: The present protocol resulted in thylakoids with a high electron transport capacity. These thylakoids can thus be used for experiments addressing various aspects of the photosynthetic electron transport by, e.g., employing artificial electron donors and acceptors which do not penetrate the diatom cell wall. In addition, the present isolation protocol yields diatom thylakoids with the potential for xanthophyll cycle and non-photochemical quenching measurements. However, the preparation has to be further refined before these important topics can be addressed systematically.
Assuntos
Fracionamento Celular/métodos , Diatomáceas/metabolismo , Transporte de Elétrons , Eucariotos/metabolismo , Tilacoides , Diatomáceas/citologia , Eucariotos/citologia , Oxigênio/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Espectrometria de Fluorescência , Tilacoides/metabolismo , Xantofilas/metabolismoRESUMO
MAIN CONCLUSION: A special domain of the thylakoid membrane of higher plants has been isolated which carries out the de-epoxidation of the xanthophyll cycle pigment violaxanthin to zeaxanthin. Recent models indicate that in the chloroplast of higher plants, the violaxanthin (V) cycle takes place within specialized domains in the thylakoid membrane. Here, we describe a new procedure to directly isolate such a domain in functional state. The procedure consists of a thylakoid membrane isolation at a pH value of 5.2 which realizes the binding of the enzyme V de-epoxidase (VDE) to the membrane throughout the preparation process. Isolated thylakoid membranes are then solubilized with the very mild detergent n-dodecyl α-D-maltoside and the pigment-protein complexes are separated by sucrose gradient ultracentrifugation. The upper main fraction of the sucrose gradient represents a V cycle domain which consists of the major light-harvesting complex of photosystem II (LHCII), a special lipid composition with an enrichment of the galactolipid monogalactosyldiacylglycerol (MGDG) and the VDE. The domain is isolated in functional state as evidenced by the ability to convert the LHCII-associated V to zeaxanthin. The direct isolation of a V cycle domain proves the most important hypotheses concerning the de-epoxidation reaction in intact thylakoid membranes. It shows that the VDE binds to the thylakoid membrane at low pH values of the thylakoid lumen, that it binds to membrane regions enriched in LHCII, and that the domain contains high amounts of MGDG. The last point is in line with the importance of the galactolipid for V solubilisation and, by providing inverted hexagonal lipid structures, for VDE activity.
Assuntos
Tilacoides/fisiologia , Western Blotting , Centrifugação com Gradiente de Concentração , Eletroforese em Gel de Poliacrilamida , Oxirredutases/metabolismo , Folhas de Planta/metabolismo , Espectrometria de Fluorescência , Spinacia oleracea/metabolismo , Tilacoides/química , Xantofilas/isolamento & purificação , Xantofilas/metabolismo , Xantofilas/fisiologia , Zeaxantinas/metabolismoRESUMO
The study investigated the effect of the thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulphoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure of two algal light-harvesting complexes (LHCs). In contrast to higher plants whose thylakoid membranes are characterized by an enrichment of the neutral galactolipids MGDG and DGDG, both the green alga Mantoniella squamata and the centric diatom Thalassiosira pseudonana contain membranes with a high content of the negatively charged lipids SQDG and PG. The algal thylakoids do not show the typical grana-stroma differentiation of higher plants but a regular arrangement. To analyze the effect of the membrane lipids, the fucoxanthin chlorophyll protein (FCP) complex of T. pseudonana and the LHC of M. squamata (MLHC) were prepared by successive cation precipitation using Triton X-100 as detergent. With this method, it is possible to isolate LHCs with a reduced amount of associated lipids in an aggregated state. The results from 77 K fluorescence and photon correlation spectroscopy show that neither the neutral galactolipids nor the negatively charged lipids are able to significantly alter the aggregation state of the FCP or the MLHC. This is in contrast to higher plants where SQDG and PG lead to a strong disaggregation of the LHCII whereas MGDG and DGDG induce the formation of large macroaggregates. The results indicate that LHCs which are integrated into thylakoid membranes with a high amount of negatively charged lipids and a regular arrangement are less sensitive to lipid-induced structural alterations than their counterparts in membranes enriched in neutral lipids with a grana-stroma differentiation.
Assuntos
Diatomáceas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Tilacoides/metabolismo , Clorofila/metabolismo , Proteínas de Ligação à Clorofila/metabolismo , Galactolipídeos/metabolismo , Complexos de Proteínas Captadores de Luz/química , Proteínas de Plantas/metabolismoRESUMO
In this chapter we focus our attention on the enigmatic structural and functional roles of the major, non-bilayer lipid monogalactosyl-diacylglycerol (MGDG) in the thylakoid membrane. We give an overview on the state of the art on the role of MGDG and non-bilayer lipid phases in the xanthophyll cycles in different organisms. We also discuss data on the roles of MGDG and other lipid molecules found in crystal structures of different photosynthetic protein complexes and in lipid-protein assemblies, as well as in the self-assembly of the multilamellar membrane system. Comparison and critical evaluation of different membrane models--that take into account and capitalize on the special properties of non-bilayer lipids and/or non-bilayer lipid phases, and thus to smaller or larger extents deviate from the 'standard' Singer-Nicolson model--will conclude this review. With this chapter the authors hope to further stimulate the discussion about, what we think, is perhaps the most exciting question of membrane biophysics: the why and wherefore of non-bilayer lipids and lipid phases in, or in association with, bilayer biological membranes.
Assuntos
Cloroplastos/fisiologia , Galactolipídeos/fisiologia , Lipídeos/fisiologia , Tilacoides/fisiologia , Cloroplastos/química , Lipídeos/química , Estrutura Molecular , Tilacoides/químicaRESUMO
MAIN CONCLUSION: MGDG leads to a dimerization of isolated, monomeric PSII core complexes. SQDG and PG induce a detachment of CP43 from the PSII core, thereby disturbing the intrinsic PSII electron transport. The influence of the four thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure and function of isolated monomeric photosystem (PS) II core complexes was investigated. Incubation with the negatively charged lipids SQDG and PG led to a loss of the long-wavelength 77 K fluorescence emission at 693 nm that is associated with the inner antenna proteins. The neutral galactolipids DGDG and MGDG had no or only minor effects on the fluorescence emission spectra of the PSII core complexes, respectively. Pigment analysis, absorption and 77 K fluorescence excitation spectroscopy showed that incubation with SQDG and PG led to an exposure of chlorophyll molecules to the surrounding medium followed by conversion to pheophytin under acidic conditions. Size-exclusion chromatography and polypeptide analysis corroborated the findings of the spectroscopic measurements and pigment analysis. They showed that the negatively charged lipid SQDG led to a dissociation of the inner antenna protein CP43 and the 27- and 25-kDa apoproteins of the light-harvesting complex II, that were also associated with a part of the PSII core complexes used in the present study. Incubation of PSII core complexes with MGDG, on the other hand, induced an almost complete dimerization of the monomeric PSII. Measurements of the fast PSII fluorescence induction demonstrated that MGDG and DGDG only had a minor influence on the reduction kinetics of plastoquinone QA and the artificial PSII electron acceptor 2,5-dimethyl-p-benzoquinone (DMBQ). SQDG and, to a lesser extent, PG perturbed the intrinsic PSII electron transport significantly.
Assuntos
Galactolipídeos/metabolismo , Glicolipídeos/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Spinacia oleracea/metabolismo , Tilacoides/metabolismo , Benzoquinonas/metabolismo , Cicloexenos/metabolismo , Transporte de Elétrons , Lipídeos de Membrana/metabolismo , Complexo de Proteína do Fotossistema II/química , Plastoquinona/metabolismo , Espectrometria de Fluorescência , Spinacia oleracea/químicaRESUMO
In the present study, the influence of Mg²âº ions and low pH values on the aggregation state of the diatom FCP and the LHCII of vascular plants was studied. In addition, the concentration of thylakoid membrane lipids associated with the complexes was determined. The results demonstrate that the FCP, which contained a significantly higher concentration of the negatively charged lipids SQDG and PG, was less sensitive to Mg²âº and low pH values than the LHCII which was characterized by lower amounts of SQDG and a higher concentration of MGDG. High MgCl2 concentrations and pH values below pH 6 induced significant changes of the absorption and 77K fluorescence emission spectra of the LHCII, indicating a strong aggregation of the light-harvesting complex. This aggregation was also visible as a pellet after centrifugation on a sucrose cushion. Although the FCP responded with changes of the absorption and fluorescence spectra to low pH and Mg²âº incubation, these spectral changes were less pronounced than those observed for the LHCII. In addition, the FCP complexes did not show a visible pellet after incubation with either low pH values or high Mg²âº concentrations. Only the combined action of Mg²âº and pH 5 led to FCP aggregates of a size that could be pelleted by centrifugation. The decreased sensitivity of FCP aggregation to Mg²âº and low pH is discussed with respect to the differences in the concentration of the lipids surrounding the FCP and LHCII and the different thylakoid membrane organizations of diatoms and vascular plants.
Assuntos
Proteínas de Ligação à Clorofila/química , Diatomáceas/metabolismo , Complexos de Proteínas Captadores de Luz/química , Lipídeos/química , Magnésio/farmacologia , Spinacia oleracea/química , Centrifugação , Proteínas de Ligação à Clorofila/isolamento & purificação , Proteínas de Ligação à Clorofila/metabolismo , Diatomáceas/efeitos dos fármacos , Glicolipídeos/química , Concentração de Íons de Hidrogênio , Complexos de Proteínas Captadores de Luz/isolamento & purificação , Complexos de Proteínas Captadores de Luz/metabolismo , Magnésio/química , Espectrometria de FluorescênciaRESUMO
In the present study, the high light (HL) acclimation of Chromera velia (Chromerida) was studied. HL-grown cells exhibited an increased cell volume and dry weight compared to cells grown at medium light (ML). The chlorophyll (Chl) a-specific absorption spectra ([Formula: see text]) of the HL cells showed an increased absorption efficiency over a wavelength range from 400 to 750 nm, possibly due to differences in the packaging of Chl a molecules. In HL cells, the size of the violaxanthin (V) cycle pigment pool was strongly increased. Despite a higher concentration of de-epoxidized V cycle pigments, non-photochemical quenching (NPQ) of the HL cells was slightly reduced compared to ML cells. The analysis of NPQ recovery during low light (LL) after a short illumination with excess light showed a fast NPQ relaxation and zeaxanthin epoxidation. Purification of the pigment-protein complexes demonstrated that the HL-synthesized V was associated with the chromera light-harvesting complex (CLH). However, the difference absorption spectrum of HL minus ML CLH, together with the 77 K fluorescence excitation spectra, suggested that the additional V was not protein bound but localized in a lipid phase associated with the CLH. The polypeptide analysis of the pigment-protein complexes showed that one out of three known LHCr proteins was associated in higher concentration with photosystem I in the HL cells, whereas in ML cells, it was enriched in the CLH fraction. In conclusion, the acclimation of C. velia to HL illumination shows features that are comparable to those of diatoms, while other characteristics more closely resemble those of higher plants and green algae.
Assuntos
Aclimatação , Luz , Microalgas/efeitos da radiação , Microalgas/citologia , Microalgas/fisiologia , Fotossíntese , Pigmentos Biológicos/metabolismo , Xantofilas/metabolismo , beta Caroteno/metabolismoRESUMO
Old Yellow Enzymes (OYEs) are flavin-containing ene-reductases that have been intensely studied with regard to their biotechnological potential for sustainable chemical syntheses. OYE-encoding genes are found throughout the domains of life, but their physiological role is mostly unknown, one reason for this being the promiscuity of most ene-reductases studied to date. The unicellular green alga Chlamydomonas reinhardtii possesses four genes coding for OYEs, three of which we have analyzed biochemically before. Ene-reductase CrOYE3 stood out in that it showed an unusually narrow substrate scope and converted N-methylmaleimide (NMI) with high rates. This was recapitulated in a C. reinhardtii croye3 mutant that, in contrast to the wild type, hardly degraded externally added NMI. Here we show that CrOYE3-mediated NMI conversion depends on electrons generated photosynthetically by photosystem II (PSII) and that the croye3 mutant exhibits slightly decreased photochemical quenching in high light. Non-photochemical quenching is strongly impaired in this mutant, and it shows enhanced oxidative stress. The phenotypes of the mutant suggest that C. reinhardtii CrOYE3 is involved in the protection against photooxidative stress, possibly by converting reactive carbonyl species derived from lipid peroxides or maleimides from tetrapyrrole degradation.
RESUMO
In the present study the influence of the lipid environment on the organization of the main light-harvesting complex of photosystem II (LHCII) was investigated by 77K fluorescence spectroscopy. Measurements were carried out with a lipid-depleted and highly aggregated LHCII which was supplemented with the different thylakoid membrane lipids. The results show that the thylakoid lipids are able to modulate the spectroscopic properties of the LHCII aggregates and that the extent of the lipid effect depends on both the lipid species and the lipid concentration. Addition of the neutral galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) seems to induce a modification of the disorganized structures of the lipid-depleted LHCII and to support the aggregated state of the complex. In contrast, we found that the anionic lipids sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) exert a strong disaggregating effect on the isolated LHCII. LHCII disaggregation was partly suppressed under a high proton concentration and in the presence of cations. The strongest suppression was visible at the lowest pH value (pH 5) and the highest Mg(2+) concentration (40 mM) used in the present study. This suggests that the negative charge of the anionic lipids in conjunction with negatively charged domains of the LHCII proteins is responsible for the disaggregation. Additional measurements by photon correlation spectroscopy and sucrose gradient centrifugation, which were used to gain information about the size and molecular mass of the LHCII aggregates, confirmed the results of the fluorescence spectroscopy. LHCII treated with MGDG and DGDG formed an increased number of aggregates with large particle sizes in the micromm-range, whereas the incubation with anionic lipids led to much smaller LHCII particles (around 40 nm in the case of PG) with a homogeneous distribution.
Assuntos
Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Lipídeos de Membrana/farmacologia , Multimerização Proteica/efeitos dos fármacos , Spinacia oleracea/química , Tilacoides/metabolismo , Galactolipídeos/farmacologia , Glicolipídeos/farmacologia , Bicamadas Lipídicas , Fosfatidilgliceróis/farmacologia , Tilacoides/químicaRESUMO
During the last years significant progress was achieved in unraveling molecular characteristics of the thylakoid membrane of different diatoms. With the present review it is intended to summarize the current knowledge about the structural and functional changes within the thylakoid membrane of diatoms acclimated to different light conditions. This aspect is addressed on the level of the organization and regulation of light-harvesting proteins, the dissipation of excessively absorbed light energy by the process of non-photochemical quenching, and the lipid composition of diatom thylakoid membranes. Finally, a working hypothesis of the domain formation of the diatom thylakoid membrane is presented to highlight the most prominent differences of heterokontic thylakoids in comparison to vascular plants and green algae during the acclimation to low and high light conditions.
Assuntos
Diatomáceas/química , Luz , Simulação de Dinâmica Molecular , Tilacoides/química , Aclimatação , Diatomáceas/metabolismo , Transferência de Energia , Lipídeos/química , Fotossíntese/fisiologia , Tilacoides/metabolismo , Xantofilas/química , Xantofilas/metabolismoRESUMO
In higher plants, the major part of the xanthophyll cycle pigment violaxanthin (Vx) is non-covalently bound to the main light-harvesting complex of PSII (LHCII). Under saturating light conditions Vx has to be released from its binding site into the surrounding lipid phase, where it is converted to zeaxanthin (Zx) by the enzyme Vx de-epoxidase (VDE). In the present study we investigated the influence of thylakoid lipids on the de-epoxidation of Vx, which was still associated with the LHCII. We isolated LHCII with different concentrations of native, endogenous lipids and Vx by sucrose gradient centrifugation or successive cation precipitation. Analysis of the different LHCII preparations showed that the concentration of LHCII-associated Vx was correlated with the concentration of the main thylakoid lipid monogalactosyldiacylglycerol (MGDG) associated with the complexes. Decreases in the MGDG content of the LHCII led to a diminished Vx concentration, indicating that a part of the total Vx pool was located in an MGDG phase surrounding the LHCII, whereas another part was bound to the LHCII apoproteins. We further studied the convertibility of LHCII-associated Vx in in-vitro enzyme assays by addition of isolated VDE. We observed an efficient and almost complete Vx conversion in the LHCII fractions containing high amounts of endogenous MGDG. LHCII preparations with low concentrations of MGDG exhibited a strongly reduced Vx de-epoxidation, which could be increased by addition of exogenous, pure MGDG. The de-epoxidation of LHCII-associated Vx was saturated at a much lower concentration of native, endogenous MGDG compared with the concentration of isolated, exogenous MGDG, which is needed for optimal VDE activity in in-vitro assays employing pure isolated Vx.
Assuntos
Galactolipídeos/farmacologia , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo , Sítios de Ligação , Bicamadas Lipídicas , Oxirredutases/metabolismo , Spinacia oleracea/química , Xantofilas/químicaRESUMO
We studied the localization of diadinoxanthin cycle pigments in the diatoms Cyclotella meneghiniana and Phaeodactylum tricornutum. Isolation of pigment protein complexes revealed that the majority of high-light-synthesized diadinoxanthin and diatoxanthin is associated with the fucoxanthin chlorophyll protein (FCP) complexes. The characterization of intact cells, thylakoid membranes, and pigment protein complexes by absorption and low-temperature fluorescence spectroscopy showed that the FCPs contain certain amounts of protein-bound diadinoxanthin cycle pigments, which are not significantly different in high-light and low-light cultures. The largest part of high-light-formed diadinoxanthin cycle pigments, however, is not bound to antenna apoproteins but located in a lipid shield around the FCPs, which is copurified with the complexes. This lipid shield is primarily composed of the thylakoid membrane lipid monogalactosyldiacylglycerol. We also show that the photosystem I (PSI) fraction contains a tightly connected FCP complex that is enriched in protein-bound diadinoxanthin cycle pigments. The peripheral FCP and the FCP associated with PSI are composed of different apoproteins. Tandem mass spectrometry analysis revealed that the peripheral FCP is composed mainly of the light-harvesting complex protein Lhcf and also significant amounts of Lhcr. The PSI fraction, on the other hand, shows an enrichment of Lhcr proteins, which are thus responsible for the diadinoxanthin cycle pigment binding. The existence of lipid-dissolved and protein-bound diadinoxanthin cycle pigments in the peripheral antenna and in PSI is discussed with respect to different specific functions of the xanthophylls.
Assuntos
Diatomáceas/metabolismo , Pigmentos Biológicos/metabolismo , Xantofilas/metabolismo , Metabolismo dos LipídeosRESUMO
In diatoms, metabolic activity during long dark periods leads to a chlororespiratory electron flow, which is accompanied by the build-up of a proton gradient strong enough to activate the diadinoxanthin (Ddx) de-epoxidation reaction of the Ddx cycle. In the present study, the impact of chlororespiration on non-photochemical quenching (NPQ) of chlorophyll fluorescence and the regulation of the Ddx cycle in the diatom Thalassiosira pseudonana was investigated by manipulation of the redox state of the photosynthetic electron transport chain during darkness. The response of a transfer of T. pseudonana cells from growth light conditions to 60 min darkness was found to depend on oxygen: in its presence there was no significant reduction of the PQ pool and no de-epoxidation of Ddx to diatoxanthin (Dtx). Under anaerobic conditions a high reduction state of the electron transport chain and a slow but steady de-epoxidation of Ddx was observed, which resulted in a significant accumulation of Dtx after 60 min of anaerobiosis. Unexpectedly, this high concentration of Dtx did not induce a correspondingly high NPQ as it would have been observed with Dtx formed under high light conditions. However, the sensitivity of NPQ to Dtx in cells kept under dark anaerobic conditions increased during reoxygenation and far-red (FR) light illumination. The results are discussed with respect to the activation of the de-epoxidation reaction and the formation of NPQ and their dependence on the extent of the proton gradient across the thylakoid membrane.
Assuntos
Clorofila/metabolismo , Diatomáceas/metabolismo , Xantofilas/metabolismo , Clorofila/química , Escuridão , Diatomáceas/efeitos da radiação , Transporte de Elétrons , Fluorescência , Luz , Oxirredução/efeitos da radiação , Oxigênio/metabolismo , FotossínteseRESUMO
Intact cells of diatoms are characterized by a rapid diatoxanthin epoxidation during low light periods following high light illumination while epoxidation is severely restricted in phases of complete darkness. The present study shows that rapid diatoxanthin epoxidation is dependent on the availability of the cofactor of diatoxanthin epoxidase, NADPH, which cannot be generated in darkness due to the inactivity of PSI. In the diatom Phaeodactylum tricornutum, NADPH production during low light is dependent on PSII activity, and addition of DCMU consequently abolishes diatoxanthin epoxidation. In contrast to P. tricornutum, DCMU does not affect diatoxanthin epoxidation in Cyclotella meneghiniana, which shows the same rapid epoxidation in low light both in the absence or presence of DCMU. Measurements of the reduction state of the PQ pool and PSI activity indicate that, in the presence of DCMU, NADPH production in C. meneghiniana occurs via alternative electron transport, which includes electron donation from the chloroplast stroma to the PQ pool and, in a second step, from PQ to PSI. Similar electron flow to PQ is also observed during high light illumination of DCMU-treated P. tricornutum cells. In contrast to C. meneghiniana, the electrons are not directed to PSI, but most likely to a plastoquinone oxidase. This chlororespiratory electron transport leads to the establishment of an uncoupler-sensitive proton gradient in the presence of DCMU, which induces diadinoxanthin de-epoxidation and NPQ. In C. meneghiniana, electron flow to the plastoquinone oxidase is restricted, and consequently, diadinoxanthin de-epoxidation and NPQ is not observed after addition of DCMU.