Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Pharm ; 19(12): 4612-4624, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36106748

RESUMO

Diabetes mellitus (DM), a multifaceted metabolic disorder if not managed properly leads to secondary complications. Diabetic peripheral neuropathy (DPN) is one such complication caused by nerve damage that cannot be reversed but can be delayed. Recently, diabetes patients are using dietary supplements, although there remains a general skepticism about this practice. Curcumin (CUR), one such supplement can help prevent underlying low-grade inflammation in diabetes, but it is plagued by poor oral bioavailability. To better understand the role of bioavailability in clinical outcomes, we have tested double-headed nanosystems containing curcumin (nCUR) on DPN. Because CUR does not influence glucose levels, we have also tested the effects of nCUR combined with long-acting subcutaneous insulin (INS). nCUR with or without INS alleviates DPN at two times lower dose than unformulated CUR, as indicated by qualitative and quantitative analysis of the hind paw, sciatic nerve, spleen, and L4-6 spinal cord. In addition, nCUR and nCUR+INS preserve hind paw nerve axons as evident by the Bielschowsky silver stain and intraepidermal nerve fibers (IENF) density measured by immunofluorescence. The mechanistic studies further corroborated the results, where nCUR or nCUR+INS showed a significant decrease in TUNEL positive cells, mRNA expression of NLRP3, IL-1ß, and macrophage infiltration while preserving nestin and NF200 expression in the sciatic nerve. Together, the data confirms that CUR bioavailability is proportional to clinical outcomes and INS alone may not be one of the solutions for DM. This study highlights the potential of nCUR with or without INS in alleviating DPN and warrants further investigation.


Assuntos
Curcumina , Diabetes Mellitus Experimental , Neuropatias Diabéticas , Animais , Ratos , Curcumina/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Insulina , Insulina Regular Humana , Ratos Sprague-Dawley
2.
ACS Appl Bio Mater ; 4(2): 1655-1667, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014513

RESUMO

Mesenchymal stem cell (MSC) therapy has been widely tested in clinical trials to promote healing post-myocardial infarction. However, low cell retention and the need for a large donor cell number in human studies remain a key challenge for clinical translation. Natural biomaterials such as gelatin are ideally suited as scaffolds to deliver and enhance cell engraftment after transplantation. A potential drawback of MSC encapsulation in the hydrogel is that the bulky matrix may limit their biological function and interaction with the surrounding tissue microenvironment that conveys important injury signals. To overcome this limitation, we adopted a gelatin methacrylate (gelMA) cell-coating technique that photocross-links gelatin on the individual cell surface at the nanoscale. The present study investigated the cardiac protection of gelMA coated, hypoxia preconditioned MSCs (gelMA-MSCs) in a murine myocardial infarction (MI) model. We demonstrate that the direct injection of gelMA-MSC results in significantly higher myocardial engraftment 7 days after MI compared to uncoated MSCs. GelMA-MSC further amplified MSC benefits resulting in enhanced cardioprotection as measured by cardiac function, scar size, and angiogenesis. Improved MSC cardiac retention also led to a greater cardiac immunomodulatory function after injury. Taken together, this study demonstrated the efficacy of gelMA-MSCs in treating cardiac injury with a promising potential to reduce the need for donor MSCs through enhanced myocardial engraftment.


Assuntos
Sobrevivência Celular/genética , Células-Tronco Mesenquimais/metabolismo , Miocárdio/metabolismo , Animais , Humanos , Camundongos , Polímeros/metabolismo
3.
Stem Cell Rev Rep ; 16(2): 413-423, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31953639

RESUMO

INTRODUCTION: Acute myocardial infarction (AMI) and resulting cardiac damage and heart failure are leading causes of morbidity and mortality worldwide. Multiple studies have examined the utility of CD34+ cells for the treatment of acute and ischemic heart disease. However, the optimal strategy to enrich CD34 cells from clinical sources is not known. We examined the efficacy of fluorescence activated cell sorting (FACS) and magnetic beads cell sorting (MACS) methods for CD34 cell isolation from mobilized human mononuclear peripheral blood cells (mhPBMNCs). METHODS: mhPBCs were processed following acquisition using FACS or MACS according to clinically established protocols. Cell viability, CD34 cell purity and characterization of surface marker expression were assessed using a flow cytometer. For in vivo characterization of cardiac repair, we conducted LAD ligation surgery on 8-10 weeks female NOD/SCID mice followed by intramyocardial transplantation of unselected mhPBMNCs, FACS or MACS enriched CD34+ cells. RESULTS: Both MACS and FACS isolation methods achieved high purity rates, viability, and enrichment of CD34+ cells. In vivo studies following myocardial infarction demonstrated retention of CD34+ in the peri-infarct region for up to 30 days after transplantation. Retained CD34+ cells were associated with enhanced angiogenesis and reduced inflammation compared to unselected mhPBMNCs or PBS treatment arms. Cardiac scar and fibrosis as assessed by immunohistochemistry were reduced in FACS and MACS CD34+ treatment groups. Finally, reduced scar and augmented angiogenesis resulted in improved cardiac functional recovery, both on the global and regional function and remodeling assessments by echocardiography. CONCLUSION: Cell based therapy using enriched CD34+ cells sorted by FACS or MACS result in better cardiac recovery after ischemic injury compared to unselected mhPBMNCs. Both enrichment techniques offer excellent recovery and purity and can be equally used for clinical applications.


Assuntos
Antígenos CD34/metabolismo , Separação Celular/métodos , Citometria de Fluxo , Fenômenos Magnéticos , Animais , Cicatriz/patologia , Feminino , Fibrose , Humanos , Imunomodulação , Inflamação/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Remodelação Ventricular
4.
J Biol Eng ; 13: 5, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30675178

RESUMO

The research community is intent on harnessing increasingly complex biological building blocks. At present, cells represent a highly functional component for integration into higher order systems. In this review, we discuss the current application space for cellular coating technologies and emphasize the relationship between the target application and coating design. We also discuss how the cell and the coating interact in common analytical techniques, and where caution must be exercised in the interpretation of results. Finally, we look ahead at emerging application areas that are ideal for innovation in cellular coatings. In all, cellular coatings leverage the machinery unique to specific cell types, and the opportunities derived from these hybrid assemblies have yet to be fully realized.

5.
Stem Cell Rev Rep ; 15(3): 404-414, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30644039

RESUMO

BACKGROUND: Acute myocardial infarction (AMI) and the ensuing ischemic heart disease are approaching an epidemic state. Limited stem cell retention following intracoronary administration has reduced the clinical efficacy of this novel therapy. Polymer based cell coating is biocompatible and has been shown to be safe. Here, we assessed the therapeutic utility of gelatin-based biodegradable cell coatings on bone marrow derived cell retention in ischemic heart. METHODS: Gelatin based cell coatings were formed from the surface-mediated photopolymerization of 3% gelatin methacrylamide and 1% PEG diacrylate. Cell coating was confirmed using a multimodality approach including flow cytometry, imaging flow cytometry (ImageStream System) and immunohistochemistry. Biocompatibility of cell coating, metabolic activity of coated cells, and the effect of cell coating on the susceptibility of cells for engulfment were assessed using in vitro models. Following myocardial infarction and GFP+ BM-derived mesenchymal stem cell transplantation, flow cytometric and immunohistochemical assessment of retained cells was performed. RESULTS: Coated cells are viable and metabolically active with coating degrading within 72 h in vitro. Importantly, cell coating does not predispose bone marrow cells to aggregation or increase their susceptibility to phagocytosis. In vitro and in vivo studies demonstrated no evidence of heightened immune response or increased phagocytosis of coated cells. Cell transplantation studies following myocardial infarction proved the improved retention of coated bone marrow cells compared to uncoated cells. CONCLUSION: Gelation based polymer cell coating is biologically safe and biodegradable. Therapies employing these strategies may represent an attractive target for improving outcomes of cardiac regenerative therapies in human studies.


Assuntos
Células da Medula Óssea , Transplante de Medula Óssea , Gelatina , Infarto do Miocárdio , Miocárdio , Acrilamidas/química , Acrilamidas/metabolismo , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Gelatina/química , Gelatina/farmacologia , Masculino , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Miocárdio/patologia
6.
PLoS One ; 13(1): e0190880, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29309430

RESUMO

Targeted photopolymerization is the basis for multiple diagnostic and cell encapsulation technologies. While eosin is used in conjunction with tertiary amines as a water-soluble photoinitiation system, eosin is not widely sold as a conjugate with antibodies and other targeting biomolecules. Here we evaluate the utility of fluorescein-labeled bioconjugates to photopolymerize targeted coatings on live cells. We show that although fluorescein conjugates absorb approximately 50% less light energy than eosin in matched photopolymerization experiments using a 530 nm LED lamp, appreciable polymer thicknesses can still be formed in cell compatible environments with fluorescein photosensitization. At low photoinitiator density, eosin allows more sensitive initiation of gelation. However at higher functionalization densities, the thickness of fluorescein polymer films begins to rival that of eosin. Commercial fluorescein-conjugated antibodies are also capable of generating conformal, protective coatings on mammalian cells with similar viability and encapsulation efficiency as eosin systems.


Assuntos
Materiais Revestidos Biocompatíveis , Amarelo de Eosina-(YS)/química , Fluoresceína/química , Luz , Polímeros/química , Células A549 , Humanos , Análise Serial de Proteínas , Espectrofotometria Ultravioleta
7.
Open Orthop J ; 7: 275-81, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23986794

RESUMO

Symptomatic osteochondral lesions occur frequently, but relatively few treatment options are currently available. The purpose of this study was to conduct a preliminary investigation into a new tissue engineering approach to osteochondral regeneration. The concept is a biphasic construct consisting of a porous, osteoconductive chitosan-calcium phosphate scaffold supporting a layer of neocartilage formed by marrow-derived mesenchymal stem cells. Two experiments were conducted to assess the feasibility of this approach. The first experiment characterized the attachment efficiency and proliferation of primary human marrow-derived mesenchymal stem cells seeded relatively sparely onto the scaffold's surface. The second experiment compared two different methods of creating a biphasic construct using a much higher density of primary porcine marrow stromal cells. About 40% of the sparsely seeded human cells attached and proliferated rapidly. Constructs formed by one of the two experimental techniques exhibited a layer of cartilaginous tissue which only partially covered the scaffold's surface due to inadequate adhesion between the cells and the scaffold. This study demonstrates some potential for the approach to yield an implantable biphasic construct, but further development is required to improve cell-scaffold adhesion.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa