Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893466

RESUMO

Epigallocatechin gallate (EGCG), the principal catechin in green tea, exhibits diverse therapeutic properties. However, its clinical efficacy is hindered by poor stability and low bioavailability. This study investigated solid particle-in-oil-in-water (S/O/W) emulsions stabilized by whey protein isolate (WPI) and sodium caseinate (NaCas) as carriers to enhance the bioavailability and intestinal absorption of EGCG. Molecular docking revealed binding interactions between EGCG and these macromolecules. The WPI- and NaCas-stabilized emulsions exhibited high encapsulation efficiencies (>80%) and significantly enhanced the bioaccessibility of EGCG by 64% compared to free EGCG after simulated gastrointestinal digestion. Notably, the NaCas emulsion facilitated higher intestinal permeability of EGCG across Caco-2 monolayers, attributed to the strong intermolecular interactions between caseins and EGCG. Furthermore, the emulsions protected Caco-2 cells against oxidative stress by suppressing intracellular reactive oxygen species generation. These findings demonstrate the potential of WPI- and NaCas-stabilized emulsions as effective delivery systems to improve the bioavailability, stability, and bioactivity of polyphenols like EGCG, enabling their applications in functional foods and nutraceuticals.


Assuntos
Disponibilidade Biológica , Caseínas , Catequina , Emulsões , Proteínas do Soro do Leite , Catequina/análogos & derivados , Catequina/química , Humanos , Proteínas do Soro do Leite/química , Caseínas/química , Células CACO-2 , Emulsões/química , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Portadores de Fármacos/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/farmacocinética , Absorção Intestinal/efeitos dos fármacos
2.
Molecules ; 28(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37375410

RESUMO

One of the most significant developed technologies is the use of acoustic waves to determine the chemical structures of biological tissues and their bioactivities. In addition, the use of new acoustic techniques for in vivo visualizing and imaging of animal and plant cellular chemical compositions could significantly help pave the way toward advanced analytical technologies. For instance, acoustic wave sensors (AWSs) based on quartz crystal microbalance (QCM) were used to identify the aromas of fermenting tea such as linalool, geraniol, and trans-2-hexenal. Therefore, this review focuses on the use of advanced acoustic technologies for tracking the composition changes in plant and animal tissues. In addition, a few key configurations of the AWS sensors and their different wave pattern applications in biomedical and microfluidic media progress are discussed.


Assuntos
Técnicas Biossensoriais , Animais , Técnicas Biossensoriais/métodos , Quartzo , Acústica , Técnicas de Microbalança de Cristal de Quartzo , Som
3.
Molecules ; 27(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35565969

RESUMO

Integrating physical and chemical technologies for the characterization and modification of plants and animal tissues has been used for several decades to improve their detection potency and quality [...].


Assuntos
Plantas , Animais
4.
Molecules ; 27(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080362

RESUMO

Inhibin is a molecule that belongs to peptide hormones and is excreted through pituitary gonadotropins stimulation action on the granulosa cells of the ovaries. However, the differential regulation of inhibin and follicle-stimulating hormone (FSH) on granulosa cell tumor growth in mice inhibin-deficient females is not yet well understood. The objective of this study was to evaluate the role of inhibin and FSH on the granulosa cells of ovarian follicles at the premature antral stage. This study stimulated immature wild-type (WT) and Inhibin-α knockout (Inha-/-) female mice with human chorionic gonadotropin (hCG) and examined hCG-induced gene expression changes in granulosa cells. Also, screening of differentially expressed genes (DEGs) was performed in the two groups under study. In addition, related modules to external traits and key gene drivers were determined through Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm. The results identified a number of 1074 and 931 DEGs and 343 overlapping DEGs (ODEGs) were shared in the two groups. Some 341 ODEGs had high relevance and consistent expression direction, with a significant correlation coefficient (r2 = 0.9145). Additionally, the gene co-expression network of selected 153 genes showed 122 nodes enriched to 21 GO biological processes (BP) and reproduction and 3 genes related to genomic pathways. By using principal component analysis (PCA), the 14 genes in the regulatory network were fixed and the cumulative proportion of fitted top three principal components was 94.64%. In conclusion, this study revealed the novelty of using ODEGs for investigating the inhibin and FSH hormone pathways that might open the way toward gene therapy for granulosa cell tumors. Also, these genes could be used as biomarkers for tracking the changes in inhibin and FSH hormone from the changes in the nutrition pattern.


Assuntos
Células da Granulosa , Inibinas , Animais , Feminino , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/farmacologia , Expressão Gênica , Genômica , Células da Granulosa/metabolismo , Humanos , Inibinas/genética , Camundongos , Camundongos Knockout
5.
Molecules ; 27(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35458795

RESUMO

Peaches are grown in many Egyptian orchards for local and global fresh market sales. The interior fruit tissue breakdown (IFTB), often resulting in decayed peaches, is a severe problem during marketing. Therefore, to minimize FTB of peaches, in this study, gum arabic (GA) and polyvinylpyrrolidone (PVP) were mixed with different concentrations of salicylic acid (SA) (0, 1, and 2 mM) and were applied as edible coating to extend the shelf life of peach fruits. Mature peaches were selected and harvested when peaches reached total soluble solid content (SSC: 8.5%) and fruit firmness of about 47 N. Fruits were coated and stored at room temperature (26 ± 1 °C and air humidity 51 ± 1%) for 10 days during two seasons: 2020 and 2021. Fruit coated with GA/PVP-SA 2 mM showed a significant (p < 0.05) inhibition in degrading enzyme activities (CWDEs), such as lipoxygenase (LOX), cellulase (CEL), and pectinase (PT), compared to uncoated and coated fruits during the shelf-life period. Hence, cell wall compartments were maintained. Consequently, there was a reduction in browning symptoms in fruits by inhibiting polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL) activities. Thus, the fruit skin browning index showed almost no symptoms. The lipid peroxidation process and ionic permeability declined as well. The result suggests that, by applying GA/PVP-SA 2 mM as an edible coating, fruit tissue breakdown can be minimized, and the shelf life of peach can be extended up to 10 days without symptoms of tissue breakdown.


Assuntos
Prunus persica , Frutas/metabolismo , Goma Arábica , Povidona , Ácido Salicílico/metabolismo
6.
Ecotoxicol Environ Saf ; 225: 112800, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547661

RESUMO

Phytochelatins are plants' small metal-binding peptides which chelate internal heavy metals to form nontoxic complexes. Detecting the complexes in plants would simplify identification of cultivars with both high tolerance and enrichment capabilities for heavy metals which represent phytoextraction performance. Thus, a terahertz spectroscopy combined with density functional theory, chemometrics and circular dichroism was used for characterization of phytochelatin2 (PC2), Cd-PC2 mixture standards, and pak choi (Brassica chinensis) leaves as a plant model. Results showed PC2 chelates Cd2+ in a 2:1 ratio to form Cd(PC2)2 complex; Cd connected to thoils of PC2 and changed ß-turn and random coil of PC2 peptide chain to ß-Sheet which presented as terahertz vibrations of PC2 around 1.03 and 1.71 THz being suppressed; the best models for detecting the complex in pak choi were obtained by partial least squares regression modeling combined with successive projections algorithm selection; the models used PC2 as a natural probe for visualizing and quantifying chelated Cd in pak choi leaf and achieved a limit of detection up to 1.151 ppm. This study suggested that terahertz information of the heavy metal-PCs complexes is qualified for representing a simpler alternative to classical index for evaluating phytoextraction performance of plant; it provided a general protocol for structure analysis and detection of heavy metal-PCs complexes in plant by terahertz absorbance.


Assuntos
Brassica , Metais Pesados , Cádmio , Dicroísmo Circular , Fitoquelatinas
7.
Molecules ; 26(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34946548

RESUMO

Schisandrin A (SCH) is a natural bioactive phytonutrient that belongs to the lignan derivatives found in Schisandra chinensis fruit. This study aims to investigate the impact of SCH on promoting neural progenitor cell (NPC) regeneration for avoiding stroke ischemic injury. The promoting effect of SCH on NPCs was evaluated by photothrombotic model, immunofluorescence, cell line culture of NPCs, and Western blot assay. The results showed that neuron-specific class III beta-tubulin (Tuj1) was positive with Map2 positive nerve fibers in the ischemic area after using SCH. In addition, Nestin and SOX2 positive NPCs were significantly (p < 0.05) increased in the penumbra and core. Further analysis identified that SCH can regulate the expression level of cell division control protein 42 (Cdc42). In conclusion, our findings suggest that SCH enhanced NPCs proliferation and differentiation possible by Cdc42 to regulated cytoskeletal rearrangement and polarization of cells, which provides new hope for the late recovery of stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclo-Octanos/farmacologia , Lignanas/farmacologia , Células-Tronco Neurais/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Policíclicos/farmacologia , Animais , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Linhagem Celular , Ciclo-Octanos/química , Lignanas/química , Masculino , Camundongos , Compostos Fitoquímicos/química , Compostos Policíclicos/química
8.
J Food Sci Technol ; 55(12): 4719-4734, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30482968

RESUMO

Antioxidant activity, lipid oxidation, fatty acid composition and volatile compounds of duck eggs supplemented with clove extract were monitored over the salting period. The results indicated that application of clove extracts significantly reduced 2-thiobarbituric acid reactive substances and anisidine values as well as the conjugated dienes levels during curing. Clove extracts along with salting time had significant effects on the fatty acid composition. The predominant fatty acid in salted duck eggs supplemented with clove extracts for 14 day of the salting process was oleic acid, followed by palmitic acid and arachidonic acid. Additionally, treated eggs exhibited a higher docosahexaenoic acid content than that of control. The results of SPME GC-MS showed the presence of 46 and 37 volatiles in the treated eggs. Eugenol, as the primary bioactive component of clove, was detected in salted eggs supplemented with clove extracts. In addition, analyzing the results obtained through electronic nose showed that clove extract brought significant changes in salted eggs flavor components.

9.
Nutr J ; 15(1): 52, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27175476

RESUMO

BACKGROUND: The beneficial effects of the polyphenol (PP) rich fruits and Lactic acid bacteria fermented foods had been reported as cost-effective strategies for health promotion. Randomized controlled trial was designed to test the hypothesis that daily intake of polyphenol rich pomegranate juice (PGJ) or/ and lactic acid bacteria fermented sobya (FS) improved selected biomarkers of relevance to heath status. METHODS: The design of the human trial consisted of 35 healthy adults, who were distributed to 5 equal groups; The first group served as control and received no supplements; the second group received fresh apricot fruits (200 g); the third (PGJ) (250 g), the fourth a mixture of PGJ (150 g) and FS (140 g) and the fifth group received (FS) (170 g). The supplements were served daily between 5 - 6 pm for 21 days. Blood and urine samples were collected at days zero and 22 of the dietary intervention. The supplements were analyzed chemically for (PP) contents and total antioxidative activities and microbiologically for selected bacteria and yeast counts. The blood samples were assayed for plasma antioxidative activities and for erythrocytic glutathione transferase activity (E-GST). Urine samples were analyzed for the excretions of total PP, antioxidative activity and thiobarbituric acid reactive substances (TBARS). STATISTICAL ANALYSIS: Two way analysis of variance (ANOVA) was conducted and included the main effects of treatment, time and treatment x time interaction. RESULTS: Daily intake of (PGJ) for 3 weeks significantly increased the plasma and urinary anti-oxidative activities and reduced the urinary excretion of (TBARS). Daily intake of (FS) for 3 weeks increased only (E-GST) activity. Daily intake of a mixture of PGJ and (FS) was also effective. CONCLUSIONS: The daily intakes of PGJ and/ or (FS) affected positively selected biomarkers of relevance to health status. These functional foods have potential implication for use as bio-therapeutic foods. TRIAL REGISTRATION: The study was approved by the research ethical committee of the Ministry of Health & population, Egypt. The trial registration - the unique identifying number. (REC) decision No 12-2013-9, which complied with the Declaration of Helsinki guidelines (2004). The protocol was fully explained to all subjects and written informed consent was obtained before their participation in the trial.


Assuntos
Biomarcadores/sangue , Biomarcadores/urina , Sucos de Frutas e Vegetais , Estresse Oxidativo , Adulto , Antioxidantes/análise , Ácido Ascórbico/sangue , Creatinina/sangue , Dieta , Egito , Eritrócitos/enzimologia , Feminino , Glutationa Transferase/sangue , Humanos , Lythraceae/química , Masculino , Avaliação Nutricional , Polifenóis/administração & dosagem , Polifenóis/urina , Prunus armeniaca/química , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Adulto Jovem
10.
Biosens Bioelectron ; 261: 116504, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38896978

RESUMO

The integration between RNA-sequencing and micro-spectroscopic techniques has recently profiled the advanced transcriptomic discoveries on the cellular level. In the current study, by combining the sensation approach (including bio-molecules structural evaluation, high throughput next-generation sequencing (HT-NGS), and confocal Raman microscopy) the functionality on the single live cancer cells' ferroptosis and apoptosis signaling pathways is visualized. Our study reveals a hydrophobic tunnel by phycocyanin-isoprene molecule (PC-SIM) electrostatic charge within hepatoma cells (HepG2) that activates the ferritin light chain (FTL) and caspase-8 associate protein (CASP8AP2) ferroptosis responsible genes. Moreover, this research proves that PC-vanillin (VAN) stimulation induces the actin-binding factor profilin-1 (PFN1), subsequently in situ tracking its expression at 1139.75 cm-1 microRaman wavenumber. While PC-thymol (THY) induces the lysophospholipase-2 (LYPLA2) (p-value = 0.009) and acetylneuraminate-9-O-acetyltransferase (CASD1) (p-value = 0.022) at 1143.19 cm-1. Our findings establish a new concept to promote the cross-disciplinary use of instant cellular-based detection technology for intermediary evaluating the signaling cellular transcriptome.


Assuntos
Técnicas Biossensoriais , Ferroptose , Humanos , Técnicas Biossensoriais/métodos , Ferroptose/genética , Células Hep G2 , Análise de Célula Única/métodos , Redes e Vias Metabólicas/genética , RNA-Seq/métodos , Apoptose/genética , Sequenciamento de Nucleotídeos em Larga Escala
11.
Plant Physiol Biochem ; 212: 108769, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797010

RESUMO

The primary challenges in tea production under multiple stress exposures have negatively affected its global market sustainability, so introducing an infield fast technique for monitoring tea leaves' stresses has tremendous urgent needs. Therefore, this study aimed to propose an efficient method for the detection of stress symptoms based on a portable smartphone with deep learning models. Firstly, a database containing over 10,000 images of tea garden canopies in complex natural scenes was developed, which included healthy (no stress) and three types of stress (tea anthracnose (TA), tea blister blight (TB) and sunburn (SB)). Then, YOLOv5m and YOLOv8m algorithms were adapted to discriminate the four types of stress symptoms; where the YOLOv8m algorithm achieved better performance in the identification of healthy leaves (98%), TA (92.0%), TB (68.4%) and SB (75.5%). Furthermore, the YOLOv8m algorithm was used to construct a model for differentiation of disease severity of TA, and a satisfactory result was obtained with the accuracy of mild, moderate, and severe TA infections were 94%, 96%, and 91%, respectively. Besides, we found that CNN kernels of YOLOv8m could efficiently extract the texture characteristics of the images at layer 2, and these characteristics can clearly distinguish different types of stress symptoms. This makes great contributions to the YOLOv8m model to achieve high-precision differentiation of four types of stress symptoms. In conclusion, our study provided an effective system to achieve low-cost, high-precision, fast, and infield diagnosis of tea stress symptoms in complex natural scenes based on smartphone and deep learning algorithms.


Assuntos
Algoritmos , Aprendizado Profundo , Folhas de Planta , Smartphone , Camellia sinensis , Estresse Fisiológico/fisiologia , Doenças das Plantas/microbiologia , Chá
12.
Food Chem ; 458: 140291, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38959795

RESUMO

Staphylococcus aureus contamination continues to be a harmful foodborne pathogen threatening of human health, and there is a growing need for rapid detection technologies. This study proposed a novel paper biosensor based on a polydiacetylene (PDA) polymer functionalized fibrinogen (Fg) for the detection of S. aureus in food sources. The fluorophore was developed based on the high binding ability of fibrinogen-binding proteins on the surface of S. aureus. This binding caused twisting in the PDA backbone, leading to changes in chromatic and fluorescent. The detection limit of this method was 50.1 CFU/mL for S. aureus-contaminated foodstuffs and 65.0 CFU/mL for the pure S. aureus culture, and the novelty came from its rapidity and selectivity for S. aureus compared to other foodborne bacteria. In summary, the present work provides a rapid detection method for S. aureus detection, which will help in addressing food safety-related issues.

13.
Sci Rep ; 14(1): 8223, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589386

RESUMO

Supercapacitors have emerged as highly efficient energy storage devices, relying on electrochemical processes. The performance of these devices can be influenced by several factors, with key considerations including the selection of electrode materials and the type of electrolyte utilized. Transition metal oxide electrodes are commonly used in supercapacitors, as they greatly influence the electrochemical performance of these devices. Nonetheless, ferrites' low energy density poses a limitation. Hence, it is crucial to create electrode materials featuring unique and distinct structures, while also exploring the ideal electrolyte types, to enhance the electrochemical performance of supercapacitors incorporating magnesium ferrites (MF). In this study, we effectively prepared magnesium ferrites (MgFe2O4) supported on activated carbon (AC) derived from orange peels (OP) using a simple hydrothermal method. The resulting blends underwent comprehensive characterization employing various methods, including FTIR, XRD, TEM, SEM, EDX, and mapping analysis. Moreover, the electrochemical performance of MgFe2O4@AC composites was evaluated using GCD and CV techniques. Remarkably, the MF45-AC electrode material showed exceptional electrochemical behavior, demonstrating a specific capacitance of 870 F·g-1 within current density of 1.0 A g-1 and potential windows spanning from 0 to 0.5 V. Additionally, the prepared electrodes displayed exceptional cycling stability, with AC, MF, and MF45-AC retaining 89.6%, 94.2%, and 95.1% of their initial specific capacitance, respectively, even after 5000 cycles. These findings underscore the potential of MF-AC composites as superior electrode materials for supercapacitors. The development of such composites, combined with tailored electrolyte concentrations, holds significant promise for advancing the electrochemical performance and energy density of supercapacitor devices.

14.
Food Res Int ; 186: 114401, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729704

RESUMO

Fuzhuan brick tea (FBT) fungal fermentation is a key factor in achieving its unique dark color, aroma, and taste. Therefore, it is essential to develop a rapid and reliable method that could assess its quality during FBT fermentation process. This study focused on using electronic nose (e-nose) and spectroscopy combination with sensory evaluations and physicochemical measurements for building machine learning (ML) models of FBT. The results showed that the fused data achieved 100 % accuracy in classifying the FBT fermentation process. The SPA-MLR method was the best prediction model for FBT quality (R2 = 0.95, RMSEP = 0.07, RPD = 4.23), and the fermentation process was visualized. Where, it was effectively detecting the degree of fermentation relationship with the quality characteristics. In conclusion, the current study's novelty comes from the established real-time method that could sensitively detect the unique post-fermentation quality components based on the integration of spectral, and e-nose and ML approaches.


Assuntos
Nariz Eletrônico , Fermentação , Espectroscopia de Luz Próxima ao Infravermelho , Paladar , Chá , Chá/química , Chá/microbiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Odorantes/análise , Quimiometria/métodos , Humanos , Fungos/metabolismo , Aprendizado de Máquina , Compostos Orgânicos Voláteis/análise
15.
Heliyon ; 10(9): e30440, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742087

RESUMO

Sechium edule, commonly known as chayote is known for its low glycemic index, high fiber content, and rich nutritional profile, which suggests it may be beneficial for individuals with diabetes. While research specifically examining the impact of chayote on diabetes is limited, this study screened its biological impacts by using different biomarkers on streptozotocin-induced diabetic (STZ-ID) rats. The ethanolic extract of the Sechium edule fruits was assessed for different phytochemical, biochemical, and anti-diabetic properties. In the results, chayote extract had high phenolic and flavonoid contents respectively (39.25 ± 0.65 mg/mL and 12.16 ± 0.50 mg/mL). These high phenolic and flavonoid contents showed high implications on STZ-ID rats. Altogether 200 and 400 mg/kg of the extract considerably reduced the blood sugar level and enhanced the lipid profile of the STZ-ID rats. Additionally, they have decreased blood urea and serum creatinine levels. Besides, the levels of SGOT, SGPT, LDH, sodium, and potassium ions were significantly lowered after the administration period. More importantly, the electrocardiogram (ECG) parameters such as QT, RR, and QTc which were prolonged in the diabetic rats were downregulated after 35 days of administration of S. edule extract (400 mg/kg). And, the histological examination of the pancreas and kidney showed marked improvement in structural features of 200 and 400 mg/kg groups when compared to the diabetic control group. Where the increase in the glucose levels was positively correlated with QT, RR, and QTc (r2 = 0.76, r2 = 0.76, and r2 = 0.43) which means that ECG could significantly reflect the diabetes glucose levels. In conclusion, our findings showed that the fruit extract exerts a high potential to reduce artifacts secondary to diabetes which can be strongly suggested for diabetic candidates. However, there is a need to study the molecular mechanisms of the extract in combating artifacts secondary to diabetes in experimental animals.

16.
Bioresour Technol ; 388: 129740, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717702

RESUMO

Metabolic fluxes (MF) serve as the functional phenotypes of biochemical processes and are crucial to describe the distribution of precursors within metabolic networks. There is a lack of experimental observations for carbon flux towards lipids, which is important for biodiesel generation. Here, the accumulation of lipid, and MF in Tetradesmus obliquus under nitrogen deficiency stress (NF) using a 13C isotope tracer at different time intervals was investigated. The 13C based MF showed enhanced de novo synthesis of G3P and PEP, indicating increased carbon flux from CO2 into lipid synthesis. An increase in palmitic acid (3500 µmol/mg), linoleic acid (2100 µmol/mg), and oleic acid (2000 µmol/mg) was observed. The accumulation of C16:0 under NF was mainly related to de novo synthesis while C18:3 was accumulated through a non de novo pathway. Under NF stress, T. obliquus had higher flux in PPP and glycolysis pathway, together, it might provide more NADPH and substrate acetyl-CoA for fatty acid synthesis.

17.
Plant Physiol Biochem ; 200: 107752, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37224628

RESUMO

Carbon dioxide (CO2) is considered one of the eco-related key factors that negatively affect global climatic change. Also, CO2 can play an important role in the postharvest quality of the agri-products. In this study, the impact of CO2 on the quality of postharvest onions that were stored at 23 °C for 8 weeks was investigated. The weight loss, phenolic, flavonoid, flavanol, anthocyanin, antioxidant activity, and soluble sugar were analyzed during the study period. The results showed that 20% CO2 treatment was significantly (P > 0.05) more effective than 15% CO2 and control in inhibiting weight loss. Additionally, 20% CO2 treatment significantly retained higher antioxidant enzyme activities such as CAT, APX, and SOD than 15% CO2 and control. During storage, 20% CO2 treatment significantly (P < 0.05) improved glucose, fructose, and sucrose levels by more than 15% CO2 exposure and control groups. Besides the chlorogenic acid, kaempferol and quercetin were significantly (P < 0.05) higher in the 20% CO2 than in the 15% CO2 after 2 weeks of storage. In conclusion, this study's novelty comes from the broad prospects of using CO2 for maximizing the stored onion phytochemical functionality that is usually affected by the room temperature long storage. This will help in the onion shelf-life extension by considering the quality-related attributes.


Assuntos
Antioxidantes , Cebolas , Dióxido de Carbono , Flavonoides , Quercetina
18.
aBIOTECH ; 4(4): 359-371, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38106429

RESUMO

The past few years have witnessed significant progress in emerging disease detection techniques for accurately and rapidly tracking rice diseases and predicting potential solutions. In this review we focus on image processing techniques using machine learning (ML) and deep learning (DL) models related to multi-scale rice diseases. Furthermore, we summarize applications of different detection techniques, including genomic, physiological, and biochemical approaches. In addition, we also present the state-of-the-art in contemporary optical sensing applications of pathogen-plant interaction phenotypes. This review serves as a valuable resource for researchers seeking effective solutions to address the challenges of high-throughput data and model recognition for early detection of issues affecting rice crops through ML and DL models.

19.
Sci Total Environ ; 858(Pt 3): 160195, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379330

RESUMO

Mobile colloids impact phosphorus (P) binding and transport in agroecosystems. However, their relationship to P-lability and their relative importance to P-bioavailability is unclear. In soils amended with organic fertilisers, we investigated the effects of nano (NC; 1-20 nm), fine (FC; 20-220 nm), and medium (MC; 220-450 nm) colloids suspended in soil solution on soil P-desorption and lability. The underlying hypothesis is that mobile colloids of different sizes, i.e., NC, FC, and MC, may contribute differently to P-lability in soils enriched with organic fertiliser. NC- and FC-bound Pcoll were positively correlated with P-lability parameters from diffusive gradient in thin films (DGTA-labile P concentration, r ≥ 0.88; and DGTA-effective P concentration, r ≥ 0.87). The corresponding relations with MC-bound Pcoll are weaker (r values of 0.50 and 0.51). NC- and FC-bound Pcoll were also strongly correlated with soil P-resupply (r ≥ 0.64) and desorption (r ≥ 0.79) parameters during DGTA deployment, and the mobility of these colloids was corroborated by electron microscopy of DGTA gels. MC-bound Pcoll was negatively correlated with the solid-to-solution distribution coefficient (r = -0.42), indicating this fraction is unlikely to be the source of P-release from the solid phase after P-depletion from the soil solution. We conclude that NC and FC mainly contribute to regulating soil desorbable-P supply to the soil solution in the DGTA depletion zone (in vitro proxy for plant rhizosphere), and consequently may act as critical conditioners of P-bioavailability, whereas MC tends to form complexes that lead to P-occlusion rather than lability.


Assuntos
Fósforo , Solo
20.
Antioxidants (Basel) ; 11(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35883858

RESUMO

Proanthocyanidins (PAs) are considered to be effective natural byproduct and bioactive antioxidants. However, few studies have focused on their mode of action pathways. In this study, reactive oxygen species (ROS), oxidative stress indices, real-time PCR, Western blotting, confocal microscopy, and molecular docking were used to investigate the protective effect of purified kiwi leaves PAs (PKLPs) on Caco-2 cells' oxidative stress mechanisms. The results confirmed that pre-treatment with PKLPs significantly reduced H2O2-induced oxidative damage, accompanied by declining ROS levels and malondialdehyde (MDA) accumulation in the Caco-2 cells. The PKLPs upregulated the expression of antioxidative enzymes (GSH-px, CAT, T-SOD) and the relative mRNA (Nrf, HO-1, SOD-1, CAT) of the nuclear factor erythroid 2-related factor (Nrf2) signaling pathway. The protein-expressing level of the Nrf2 and its relative protein (NQO-1, HO-1, SOD-1) were significantly increased (p < 0.05) in the PKLPs pre-treatment group compared to the model group. In conclusion, the novelty of this study is that it explains how PKLPs' efficacy on the Nrf2-ARE signaling pathway, in protecting vital cells from oxidative stress, could be used for cleaner production.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa