Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33452137

RESUMO

Transmitter receptors constitute a key component of the molecular machinery for intercellular communication in the brain. Recent efforts have mapped the density of diverse transmitter receptors across the human cerebral cortex with an unprecedented level of detail. Here, we distill these observations into key organizational principles. We demonstrate that receptor densities form a natural axis in the human cerebral cortex, reflecting decreases in differentiation at the level of laminar organization and a sensory-to-association axis at the functional level. Along this natural axis, key organizational principles are discerned: progressive molecular diversity (increase of the diversity of receptor density); excitation/inhibition (increase of the ratio of excitatory-to-inhibitory receptor density); and mirrored, orderly changes of the density of ionotropic and metabotropic receptors. The uncovered natural axis formed by the distribution of receptors aligns with the axis that is formed by other dimensions of cortical organization, such as the myelo- and cytoarchitectonic levels. Therefore, the uncovered natural axis constitutes a unifying organizational feature linking multiple dimensions of the cerebral cortex, thus bringing order to the heterogeneity of cortical organization.


Assuntos
Encéfalo/metabolismo , Comunicação Celular/genética , Córtex Cerebral/metabolismo , Receptores de Neurotransmissores/genética , Autorradiografia , Encéfalo/diagnóstico por imagem , Encéfalo/ultraestrutura , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/ultraestrutura , Humanos , Receptores de AMPA/genética , Receptores de AMPA/isolamento & purificação , Receptores de GABA-A/genética , Receptores de GABA-A/isolamento & purificação , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/isolamento & purificação , Receptores de Neurotransmissores/química , Receptores de Neurotransmissores/classificação , Receptores de Neurotransmissores/ultraestrutura
2.
PLoS Comput Biol ; 18(11): e1010639, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36383563

RESUMO

The connectivity of Artificial Neural Networks (ANNs) is different from the one observed in Biological Neural Networks (BNNs). Can the wiring of actual brains help improve ANNs architectures? Can we learn from ANNs about what network features support computation in the brain when solving a task? At a meso/macro-scale level of the connectivity, ANNs' architectures are carefully engineered and such those design decisions have crucial importance in many recent performance improvements. On the other hand, BNNs exhibit complex emergent connectivity patterns at all scales. At the individual level, BNNs connectivity results from brain development and plasticity processes, while at the species level, adaptive reconfigurations during evolution also play a major role shaping connectivity. Ubiquitous features of brain connectivity have been identified in recent years, but their role in the brain's ability to perform concrete computations remains poorly understood. Computational neuroscience studies reveal the influence of specific brain connectivity features only on abstract dynamical properties, although the implications of real brain networks topologies on machine learning or cognitive tasks have been barely explored. Here we present a cross-species study with a hybrid approach integrating real brain connectomes and Bio-Echo State Networks, which we use to solve concrete memory tasks, allowing us to probe the potential computational implications of real brain connectivity patterns on task solving. We find results consistent across species and tasks, showing that biologically inspired networks perform as well as classical echo state networks, provided a minimum level of randomness and diversity of connections is allowed. We also present a framework, bio2art, to map and scale up real connectomes that can be integrated into recurrent ANNs. This approach also allows us to show the crucial importance of the diversity of interareal connectivity patterns, stressing the importance of stochastic processes determining neural networks connectivity in general.


Assuntos
Encéfalo , Conectoma , Redes Neurais de Computação , Aprendizado de Máquina
3.
Neuroimage ; 247: 118770, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34861392

RESUMO

The human brain varies across individuals in its morphology, function, and cognitive capacities. Variability is particularly high in phylogenetically modern regions associated with higher order cognitive abilities, but its relationship to the layout and strength of functional networks is poorly understood. In this study we disentangled the variability of two key aspects of functional connectivity: strength and topography. We then compared the genetic and environmental influences on these two features. Genetic contribution is heterogeneously distributed across the cortex and differs for strength and topography. In heteromodal areas genes predominantly affect the topography of networks, while their connectivity strength is shaped primarily by random environmental influence such as learning. We identified peak areas of genetic control of topography overlapping with parts of the processing stream from primary areas to network hubs in the default mode network, suggesting the coordination of spatial configurations across those processing pathways. These findings provide a detailed map of the diverse contribution of heritability and individual experience to the strength and topography of functional brain architecture.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Adulto , Cognição , Conectoma , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Gêmeos
4.
PLoS Biol ; 17(3): e2005346, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30901324

RESUMO

The cerebral cortex of mammals exhibits intricate interareal wiring. Moreover, mammalian cortices differ vastly in size, cytological composition, and phylogenetic distance. Given such complexity and pronounced species differences, it is a considerable challenge to decipher organizational principles of mammalian connectomes. Here, we demonstrate species-specific and species-general unifying principles linking the physical, cytological, and connectional dimensions of architecture in the mouse, cat, marmoset, and macaque monkey. The existence of connections is related to the cytology of cortical areas, in addition to the role of physical distance, but this relation is attenuated in mice and marmoset monkeys. The cytoarchitectonic cortical gradients, and not the rostrocaudal axis of the cortex, are closely linked to the laminar origin of connections, a principle that allows the extrapolation of this connectional feature to humans. Lastly, a network core, with a central role under different modes of network communication, characterizes all cortical connectomes. We observe a displacement of the network core in mammals, with a shift of the core of cats and macaque monkeys toward the less neuronally dense areas of the cerebral cortex. This displacement has functional ramifications but also entails a potential increased degree of vulnerability to pathology. In sum, our results sketch out a blueprint of mammalian connectomes consisting of species-specific and species-general links between the connectional, physical, and cytological dimensions of the cerebral cortex, possibly reflecting variations and persistence of evolutionarily conserved mechanisms and cellular phenomena. Our framework elucidates organizational principles that encompass but also extend beyond the wiring economy principle imposed by the physical embedding of the cerebral cortex.


Assuntos
Córtex Cerebral/metabolismo , Conectoma/métodos , Animais , Haplorrinos , Camundongos , Modelos Neurológicos , Rede Nervosa/metabolismo , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Filogenia
5.
Cereb Cortex ; 31(5): 2425-2449, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33367521

RESUMO

Cognitive abilities of the human brain, including language, have expanded dramatically in the course of our recent evolution from nonhuman primates, despite only minor apparent changes at the gene level. The hypothesis we propose for this paradox relies upon fundamental features of human brain connectivity, which contribute to a characteristic anatomical, functional, and computational neural phenotype, offering a parsimonious framework for connectomic changes taking place upon the human-specific evolution of the genome. Many human connectomic features might be accounted for by substantially increased brain size within the global neural architecture of the primate brain, resulting in a larger number of neurons and areas and the sparsification, increased modularity, and laminar differentiation of cortical connections. The combination of these features with the developmental expansion of upper cortical layers, prolonged postnatal brain development, and multiplied nongenetic interactions with the physical, social, and cultural environment gives rise to categorically human-specific cognitive abilities including the recursivity of language. Thus, a small set of genetic regulatory events affecting quantitative gene expression may plausibly account for the origins of human brain connectivity and cognition.


Assuntos
Evolução Biológica , Encéfalo/fisiologia , Conectoma , Regulação da Expressão Gênica no Desenvolvimento/genética , Animais , Encéfalo/crescimento & desenvolvimento , Cognição , Genoma Humano , Humanos , Idioma , Tamanho do Órgão , Fenótipo , Primatas
6.
Neuroimage ; 228: 117685, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33359344

RESUMO

Evolution, as we currently understand it, strikes a delicate balance between animals' ancestral history and adaptations to their current niche. Similarities between species are generally considered inherited from a common ancestor whereas observed differences are considered as more recent evolution. Hence comparing species can provide insights into the evolutionary history. Comparative neuroimaging has recently emerged as a novel subdiscipline, which uses magnetic resonance imaging (MRI) to identify similarities and differences in brain structure and function across species. Whereas invasive histological and molecular techniques are superior in spatial resolution, they are laborious, post-mortem, and oftentimes limited to specific species. Neuroimaging, by comparison, has the advantages of being applicable across species and allows for fast, whole-brain, repeatable, and multi-modal measurements of the structure and function in living brains and post-mortem tissue. In this review, we summarise the current state of the art in comparative anatomy and function of the brain and gather together the main scientific questions to be explored in the future of the fascinating new field of brain evolution derived from comparative neuroimaging.


Assuntos
Anatomia Comparada/tendências , Evolução Biológica , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Neuroimagem/tendências , Anatomia Comparada/métodos , Animais , Humanos , Neuroimagem/métodos , Primatas
7.
Neuroimage ; 223: 117346, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32916286

RESUMO

Evolution provides an important window into how cortical organization shapes function and vice versa. The complex mosaic of changes in brain morphology and functional organization that have shaped the mammalian cortex during evolution, complicates attempts to chart cortical differences across species. It limits our ability to fully appreciate how evolution has shaped our brain, especially in systems associated with unique human cognitive capabilities that lack anatomical homologues in other species. Here, we develop a function-based method for cross-species alignment that enables the quantification of homologous regions between humans and rhesus macaques, even when their location is decoupled from anatomical landmarks. Critically, we find cross-species similarity in functional organization reflects a gradient of evolutionary change that decreases from unimodal systems and culminates with the most pronounced changes in posterior regions of the default mode network (angular gyrus, posterior cingulate and middle temporal cortices). Our findings suggest that the establishment of the default mode network, as the apex of a cognitive hierarchy, has changed in a complex manner during human evolution - even within subnetworks.


Assuntos
Evolução Biológica , Córtex Cerebral/fisiologia , Conectoma/métodos , Imageamento por Ressonância Magnética , Animais , Humanos , Macaca mulatta , Vias Neurais/fisiologia , Especificidade da Espécie
8.
Neuroimage ; 191: 81-92, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30739059

RESUMO

Reconstructing the anatomical pathways of the brain to study the human connectome has become an important endeavour for understanding brain function and dynamics. Reconstruction of the cortico-cortical connectivity matrix in vivo often relies on noninvasive diffusion-weighted imaging (DWI) techniques but the extent to which they can accurately represent the topological characteristics of structural connectomes remains unknown. We addressed this question by constructing connectomes using DWI data collected from macaque monkeys in vivo and with data from published invasive tracer studies. We found the strength of fiber tracts was well estimated from DWI and topological properties like degree and modularity were captured by tractography-based connectomes. Rich-club/core-periphery type architecture could also be detected but the classification of hubs using betweenness centrality, participation coefficient and core-periphery identification techniques was inaccurate. Our findings indicate that certain aspects of cortical topology can be faithfully represented in noninvasively-obtained connectomes while other network analytic measures warrant cautionary interpretations.


Assuntos
Córtex Cerebral/anatomia & histologia , Conectoma/métodos , Imagem de Tensor de Difusão/métodos , Vias Neurais/anatomia & histologia , Animais , Macaca mulatta
9.
PLoS Comput Biol ; 14(11): e1006550, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30475798

RESUMO

The architectonic type principle relates patterns of cortico-cortical connectivity to the relative architectonic differentiation of cortical regions. One mechanism through which the observed close relation between cortical architecture and connectivity may be established is the joint development of cortical areas and their connections in developmental time windows. Here, we describe a theoretical exploration of the possible mechanistic underpinnings of the architectonic type principle, by performing systematic computational simulations of cortical development. The main component of our in silico model was a developing two-dimensional cortical sheet, which was gradually populated by neurons that formed cortico-cortical connections. To assess different explanatory mechanisms, we varied the spatiotemporal trajectory of the simulated neurogenesis. By keeping the rules governing axon outgrowth and connection formation constant across all variants of simulated development, we were able to create model variants which differed exclusively by the specifics of when and where neurons were generated. Thus, all differences in the resulting connectivity were due to the variations in spatiotemporal growth trajectories. Our results demonstrated that a prescribed targeting of interareal connection sites was not necessary for obtaining a realistic replication of the experimentally observed relation between connection patterns and architectonic differentiation. Instead, we found that spatiotemporal interactions within the forming cortical sheet were sufficient if a small number of empirically well-grounded assumptions were met, namely planar, expansive growth of the cortical sheet around two points of origin as neurogenesis progressed, stronger architectonic differentiation of cortical areas for later neurogenetic time windows, and stochastic connection formation. Thus, our study highlights a potential mechanism of how relative architectonic differentiation and cortical connectivity become linked during development. We successfully predicted connectivity in two species, cat and macaque, from simulated cortico-cortical connection networks, which further underscored the general applicability of mechanisms through which the architectonic type principle can explain cortical connectivity in terms of the relative architectonic differentiation of cortical regions.


Assuntos
Córtex Cerebral/fisiologia , Simulação por Computador , Conectoma , Mamíferos/fisiologia , Animais , Mapeamento Encefálico , Humanos , Neurogênese/fisiologia
10.
Proc Natl Acad Sci U S A ; 113(44): 12574-12579, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27791099

RESUMO

Understanding how the structure of cognition arises from the topographical organization of the cortex is a primary goal in neuroscience. Previous work has described local functional gradients extending from perceptual and motor regions to cortical areas representing more abstract functions, but an overarching framework for the association between structure and function is still lacking. Here, we show that the principal gradient revealed by the decomposition of connectivity data in humans and the macaque monkey is anchored by, at one end, regions serving primary sensory/motor functions and at the other end, transmodal regions that, in humans, are known as the default-mode network (DMN). These DMN regions exhibit the greatest geodesic distance along the cortical surface-and are precisely equidistant-from primary sensory/motor morphological landmarks. The principal gradient also provides an organizing spatial framework for multiple large-scale networks and characterizes a spectrum from unimodal to heteromodal activity in a functional metaanalysis. Together, these observations provide a characterization of the topographical organization of cortex and indicate that the role of the DMN in cognition might arise from its position at one extreme of a hierarchy, allowing it to process transmodal information that is unrelated to immediate sensory input.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Sensação/fisiologia , Córtex Sensório-Motor/fisiologia , Animais , Mapeamento Encefálico , Humanos , Macaca , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos
11.
Cereb Cortex ; 27(2): 981-997, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28184415

RESUMO

Research in the macaque monkey suggests that cortical areas with similar microstructure are more likely to be connected. Here, we examine this link in the human cerebral cortex using 2 magnetic resonance imaging (MRI) measures: quantitative  T1 maps, which are sensitive to intracortical myelin content and provide an in vivo proxy for cortical microstructure, and resting-state functional connectivity. Using ultrahigh-resolution MRI at 7 T and dedicated image processing tools, we demonstrate a systematic relationship between T1-based intracortical myelin content and functional connectivity. This effect is independent of the proximity of areas. We employ nonlinear dimensionality reduction to characterize connectivity components and identify specific aspects of functional connectivity that are linked to myelin content. Our results reveal a consistent spatial pattern throughout different analytic approaches. While functional connectivity and myelin content are closely linked in unimodal areas, the correspondence is lower in transmodal areas, especially in posteromedial cortex and the angular gyrus. Our findings are in agreement with comprehensive reports linking histologically assessed microstructure and connectivity in different mammalian species and extend them to the human cerebral cortex in vivo.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Bainha de Mielina/metabolismo , Mapeamento Encefálico/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Descanso , Software , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Adulto Jovem
12.
J Neurophysiol ; 117(3): 1084-1099, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003408

RESUMO

Investigations of the cellular and connectional organization of the lateral frontal cortex (LFC) of the macaque monkey provide indispensable knowledge for generating hypotheses about the human LFC. However, despite numerous investigations, there are still debates on the organization of this brain region. In vivo neuroimaging techniques such as resting-state functional magnetic resonance imaging (fMRI) can be used to define the functional circuitry of brain areas, producing results largely consistent with gold-standard invasive tract-tracing techniques and offering the opportunity for cross-species comparisons within the same modality. Our results using resting-state fMRI from macaque monkeys to uncover the intrinsic functional architecture of the LFC corroborate previous findings and inform current debates. Specifically, within the dorsal LFC, we show that 1) the region along the midline and anterior to the superior arcuate sulcus is divided in two areas separated by the posterior supraprincipal dimple, 2) the cytoarchitectonically defined area 6DC/F2 contains two connectional divisions, and 3) a distinct area occupies the cortex around the spur of the arcuate sulcus, updating what was previously proposed to be the border between dorsal and ventral motor/premotor areas. Within the ventral LFC, the derived parcellation clearly suggests the presence of distinct areas: 1) an area with a somatomotor/orofacial connectional signature (putative area 44), 2) an area with an oculomotor connectional signature (putative frontal eye fields), and 3) premotor areas possibly hosting laryngeal and arm representations. Our results illustrate in detail the intrinsic functional architecture of the macaque LFC, thus providing valuable evidence for debates on its organization.NEW & NOTEWORTHY Resting-state functional MRI is used as a complementary method to invasive techniques to inform current debates on the organization of the macaque lateral frontal cortex. Given that the macaque cortex serves as a model for the human cortex, our results help generate more fine-tuned hypothesis for the organization of the human lateral frontal cortex.


Assuntos
Lobo Frontal/fisiologia , Animais , Mapeamento Encefálico , Macaca , Imageamento por Ressonância Magnética , Vias Neurais/fisiologia
13.
Neuroimage ; 132: 11-23, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26883066

RESUMO

Monitoring of learning is only accurate at some time after learning. It is thought that immediate monitoring is based on working memory, whereas later monitoring requires re-activation of stored items, yielding accurate judgements. Such interpretations are difficult to test because they require reverse inference, which presupposes specificity of brain activity for the hidden cognitive processes. We investigated whether multivariate pattern classification can provide this specificity. We used a word recall task to create single trial examples of immediate and long term retrieval and trained a learning algorithm to discriminate them. Next, participants performed a similar task involving monitoring instead of recall. The recall-trained classifier recognized the retrieval patterns underlying immediate and long term monitoring and classified delayed monitoring examples as long-term retrieval. This result demonstrates the feasibility of decoding cognitive processes, instead of their content.


Assuntos
Encéfalo/fisiologia , Aprendizagem/fisiologia , Rememoração Mental/fisiologia , Metacognição/fisiologia , Adulto , Algoritmos , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Análise Multivariada , Reconhecimento Automatizado de Padrão , Adulto Jovem
14.
PLoS Comput Biol ; 10(3): e1003529, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24676052

RESUMO

The macaque brain serves as a model for the human brain, but its suitability is challenged by unique human features, including connectivity reconfigurations, which emerged during primate evolution. We perform a quantitative comparative analysis of the whole brain macroscale structural connectivity of the two species. Our findings suggest that the human and macaque brain as a whole are similarly wired. A region-wise analysis reveals many interspecies similarities of connectivity patterns, but also lack thereof, primarily involving cingulate regions. We unravel a common structural backbone in both species involving a highly overlapping set of regions. This structural backbone, important for mediating information across the brain, seems to constitute a feature of the primate brain persevering evolution. Our findings illustrate novel evolutionary aspects at the macroscale connectivity level and offer a quantitative translational bridge between macaque and human research.


Assuntos
Encéfalo/fisiologia , Conectoma , Adulto , Animais , Anisotropia , Mapeamento Encefálico , Análise por Conglomerados , Difusão , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Macaca , Masculino , Rede Nervosa , Vias Neurais , Especificidade da Espécie
15.
Cereb Cortex ; 24(5): 1178-94, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23258344

RESUMO

A consensus on the prefrontal cortex (PFC) holds that it is pivotal for flexible behavior and the integration of the cognitive, affective, and motivational domains. Certain models have been put forth and a dominant model postulates a hierarchical anterior-posterior gradient. The structural connectivity principles of this model dictate that increasingly anterior PFC regions exhibit more efferent connections toward posterior ones than vice versa. Such hierarchical asymmetry principles are thought to pertain to the macaque PFC. Additionally, the laminar patterns of the connectivity of PFC regions can be used for defining hierarchies. In the current study, we formally tested the asymmetry-based hierarchical principles of the anterior-posterior model by employing an exhaustive dataset on macaque PFC connectivity and tools from network science. On the one hand, the asymmetry-based principles and predictions of the hierarchical anterior-posterior model were not confirmed. The wiring of the macaque PFC does not fully correspond to the principles of the model, and its asymmetry-based hierarchical layout does not follow a strict anterior-posterior gradient. On the other hand, our results suggest that the laminar-based hierarchy seems a more tenable working hypothesis for models advocating an anterior-posterior gradient. Our results can inform models of the human PFC.


Assuntos
Mapeamento Encefálico , Rede Nervosa/anatomia & histologia , Córtex Pré-Frontal/anatomia & histologia , Animais , Conjuntos de Dados como Assunto , Macaca , Imageamento por Ressonância Magnética
16.
J Neurosci ; 32(30): 10238-52, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22836258

RESUMO

Human and nonhuman primates exhibit flexible behavior. Functional, anatomical, and lesion studies indicate that the lateral frontal cortex (LFC) plays a pivotal role in such behavior. LFC consists of distinct subregions exhibiting distinct connectivity patterns that possibly relate to functional specializations. Inference about the border of each subregion in the human brain is performed with the aid of macroscopic landmarks and/or cytoarchitectonic parcellations extrapolated in a stereotaxic system. However, the high interindividual variability, the limited availability of cytoarchitectonic probabilistic maps, and the absence of robust functional localizers render the in vivo delineation and examination of the LFC subregions challenging. In this study, we use resting state fMRI for the in vivo parcellation of the human LFC on a subjectwise and data-driven manner. This approach succeeds in uncovering neuroanatomically realistic subregions, with potential anatomical substrates including BA 46, 44, 45, 9 and related (sub)divisions. Ventral LFC subregions exhibit different functional connectivity (FC), which can account for different contributions in the language domain, while more dorsal adjacent subregions mark a transition to visuospatial/sensorimotor networks. Dorsal LFC subregions participate in known large-scale networks obeying an external/internal information processing dichotomy. Furthermore, we traced "families" of LFC subregions organized along the dorsal-ventral and anterior-posterior axis with distinct functional networks also encompassing specialized cingulate divisions. Similarities with the connectivity of macaque candidate homologs were observed, such as the premotor affiliation of presumed BA 46. The current findings partially support dominant LFC models.


Assuntos
Mapeamento Encefálico/métodos , Lobo Frontal/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Adulto , Feminino , Humanos , Masculino , Neuroimagem/métodos
17.
Neuroimage ; 60(2): 1250-65, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22245647

RESUMO

The present study uses multivariate pattern classification analysis to examine maturation in task-induced brain activation and in functional connectivity during adolescence. The multivariate approach allowed accurate discrimination of adolescent boys of respectively 13, 17 and 21years old based on brain activation during a gonogo task, whereas the univariate statistical analyses showed no or only very few, small age-related clusters. Developmental differences in task activation were spatially distributed throughout the brain, indicating differences in the responsiveness of a wide range of task-related and default mode regions. Moreover, these distributed age-distinctive patterns generalized from a simple gonogo task to a cognitively and motivationally very different gambling task, and vice versa. This suggests that functional brain maturation in adolescence is driven by common processes across cognitive tasks as opposed to task-specific processes. Although we confirmed previous reports of age-related differences in functional connectivity, particularly for long range connections (>60mm), these differences were not specific to brain regions that showed maturation of task-induced responsiveness. Together with the task-independency of brain activation maturation, this result suggests that brain connectivity changes in the course of adolescence affect brain functionality at a basic level. This basic change is manifest in a range of tasks, from the simplest gonogo task to a complex gambling task.


Assuntos
Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Adolescente , Fatores Etários , Mapeamento Encefálico , Humanos , Masculino , Reconhecimento Automatizado de Padrão , Adulto Jovem
18.
Cortex ; 156: 106-125, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36240722

RESUMO

Functional magnetic resonance imaging (fMRI) studies on the dynamic representation of task content focus preferentially on the cerebral cortex. However, neurophysiological studies report coding of task-relevant features also by neurons in the striatum, suggesting basal ganglia involvement in cognitive decision-making. Here we use fMRI data to show that also in humans the striatum is an integrated part of the cognitive brain network. Twelve participants performed 3 cognitive tasks in the scanner, i.e., the Eriksen flanker task, a 2-back matching spatial working memory task, and a response scheme switching task. First, we use region of interest-based multivariate pattern classification to demonstrate that each task reliably induces a unique activity pattern in the striatum and in the lateral prefrontal cortex. We show that the three tasks can also be distinguished in putamen, caudate nucleus and ventral striatum alone. We additionally establish that the contribution of striatum to cognition is not sensitive to habituation or learning. Secondly, we use voxel-to-voxel functional connectivity to establish that voxels in the lateral prefrontal cortex and in the striatum that prefer the same task show significantly stronger functional coupling than voxel pairs in these remote structures that prefer different tasks. These results suggest that striatal neurons form subnetworks with cognition-related regions of the prefrontal cortex. These remote neuron populations are interconnected via functional couplings that exceed the time of execution of the specific tasks.


Assuntos
Córtex Pré-Frontal , Estriado Ventral , Humanos , Vias Neurais , Córtex Pré-Frontal/fisiologia , Corpo Estriado , Núcleo Caudado , Putamen , Imageamento por Ressonância Magnética
19.
Netw Neurosci ; 6(4): 950-959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36875013

RESUMO

What structural and connectivity features of the human brain help to explain the extraordinary human cognitive abilities? We recently proposed a set of relevant connectomic fundamentals, some of which arise from the size scaling of the human brain relative to other primate brains, while others of these fundamentals may be uniquely human. In particular, we suggested that the remarkable increase of the size of the human brain due to its prolonged prenatal development has brought with it an increased sparsification, hierarchical modularization, as well as increased depth and cytoarchitectonic differentiation of brain networks. These characteristic features are complemented by a shift of projection origins to the upper layers of many cortical areas as well as the significantly prolonged postnatal development and plasticity of the upper cortical layers. Another fundamental aspect of cortical organization that has emerged in recent research is the alignment of diverse features of evolution, development, cytoarchitectonics, function, and plasticity along a principal, natural cortical axis from sensory ("outside") to association ("inside") areas. Here we highlight how this natural axis is integrated in the characteristic organization of the human brain. In particular, the human brain displays a developmental expansion of outside areas and a stretching of the natural axis such that outside areas are more widely separated from each other and from inside areas than in other species. We outline some functional implications of this characteristic arrangement.

20.
Brain Struct Funct ; 226(4): 979-987, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33559742

RESUMO

Structural connections between cortical areas form an intricate network with a high degree of specificity. Many aspects of this complex network organization in the adult mammalian cortex are captured by an architectonic type principle, which relates structural connections to the architectonic differentiation of brain regions. In particular, the laminar patterns of projection origins are a prominent feature of structural connections that varies in a graded manner with the relative architectonic differentiation of connected areas in the adult brain. Here we show that the architectonic type principle is already apparent for the laminar origins of cortico-cortical projections in the immature cortex of the macaque monkey. We find that prenatal and neonatal laminar patterns correlate with cortical architectonic differentiation, and that the relation of laminar patterns to architectonic differences between connected areas is not substantially altered by the complete loss of visual input. Moreover, we find that the degree of change in laminar patterns that projections undergo during development varies in proportion to the relative architectonic differentiation of the connected areas. Hence, it appears that initial biases in laminar projection patterns become progressively strengthened by later developmental processes. These findings suggest that early neurogenetic processes during the formation of the brain are sufficient to establish the characteristic laminar projection patterns. This conclusion is in line with previously suggested mechanistic explanations underlying the emergence of the architectonic type principle and provides further constraints for exploring the fundamental factors that shape structural connectivity in the mammalian brain.


Assuntos
Córtex Cerebral , Macaca , Animais , Encéfalo , Mapeamento Encefálico , Diferenciação Celular , Vias Neurais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa