Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Infect Immun ; 91(7): e0016823, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37338410

RESUMO

Tuberculosis is still the leading cause of death globally from any infectious disease, despite the widespread use of the live attenuated vaccine Bacille Calmette Guerin (BCG). While BCG has some efficacy against disseminated TB disease in children, protection wanes into adulthood resulting in over 1.8 million TB deaths per year. This has led to efforts to develop novel vaccine candidates that either replace or boost BCG, as well as to test novel delivery mechanisms to enhance BCG's efficacy. Traditional BCG vaccination is performed as an intradermal (ID) injection but delivering BCG by an alternate route may enhance the depth and breadth of protection. Previously, we demonstrated that phenotypically and genotypically disparate Diversity Outbred (DO) mice have heterogenous responses to M. tuberculosis challenge following intradermal BCG vaccination. Here, we utilize DO mice to examine BCG-induced protection when BCG is delivered systemically via intravenous (IV) administration. We find that DO mice vaccinated with IV BCG had a greater distribution of BCG throughout their organs compared to ID-vaccinated animals. However, compared to ID-vaccinated mice, M. tuberculosis burdens in lungs and spleens were not significantly reduced in animals vaccinated with BCG IV, nor was lung inflammation significantly altered. Nonetheless, DO mice that received BCG IV had increased survival over those vaccinated by the traditional ID route. Thus, our results suggest that delivering BCG by the alternate IV route enhances protection as detected in this diverse small animal model.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Vacina BCG , Camundongos de Cruzamento Colaborativo , Tuberculose/prevenção & controle , Vacinação
2.
J Virol ; 91(18)2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28659488

RESUMO

Virus infection of humans and livestock can be devastating for individuals and populations, sometimes resulting in large economic and societal impact. Prevention of virus disease by vaccination or antiviral agents is difficult to achieve. A notable exception was the eradication of human smallpox by vaccination over 30 years ago. Today, humans and animals remain susceptible to poxvirus infections, including zoonotic poxvirus transmission. Here we identified a small molecule, bisbenzimide (bisbenzimidazole), and its derivatives as potent agents against prototypic poxvirus infection in cell culture. We show that bisbenzimide derivatives, which preferentially bind the minor groove of double-stranded DNA, inhibit vaccinia virus infection by blocking viral DNA replication and abrogating postreplicative intermediate and late gene transcription. The bisbenzimide derivatives are potent against vaccinia virus and other poxviruses but ineffective against a range of other DNA and RNA viruses. The bisbenzimide derivatives are the first inhibitors of their class, which appear to directly target the viral genome without affecting cell viability.IMPORTANCE Smallpox was one of the most devastating diseases in human history until it was eradicated by a worldwide vaccination campaign. Due to discontinuation of routine vaccination more than 30 years ago, the majority of today's human population remains susceptible to infection with poxviruses. Here we present a family of bisbenzimide (bisbenzimidazole) derivatives, known as Hoechst nuclear stains, with high potency against poxvirus infection. Results from a variety of assays used to dissect the poxvirus life cycle demonstrate that bisbenzimides inhibit viral gene expression and genome replication. These findings can lead to the development of novel antiviral drugs that target viral genomes and block viral replication.


Assuntos
Antivirais/farmacologia , Bisbenzimidazol/farmacologia , Replicação do DNA/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Vaccinia virus/efeitos dos fármacos , Vaccinia virus/fisiologia , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Corantes Fluorescentes , Humanos
3.
Dis Aquat Organ ; 121(2): 97-104, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27667807

RESUMO

Few studies have documented seasonal variation of Batrachochytrium dendrobatidis (Bd) infection rates in larval amphibians. We identified 4 natural populations of northern green frogs Lithobates clamitans melanota in Pennsylvania (USA) that contained Bd-infected tadpoles during post-wintering collections in May and June, after hibernating tadpoles had overwintered in wetlands. However, we failed to detect infected tadpoles at those wetlands when pre-wintering collections were made in late July through early September. We observed 2 cohorts of tadpoles that appeared to lack Bd-infected individuals in pre-wintering collections, yet contained Bd-infected individuals the following spring. We also observed 4 cohorts of pre-wintering tadpoles that were Bd-free, even though post-wintering tadpoles collected earlier in the year were infected with Bd. Our results suggest that tadpoles either reduce Bd infections during the summer months, and/or infections proliferate sometime prior to (or shortly after) tadpoles emerge from hibernation. It is unlikely that pre-wintering tadpoles were too small to detect Bd zoospores because (1) there was no correlation between Bd zoospore levels and tadpole size or stage, and (2) size was not a significant predictor of infection status. These results suggest that, while sampling larvae can be an effective means of collecting large sample sizes, investigators in our Mid-Atlantic region should conduct sampling by early summer to maximize the chances of detecting Bd. Further research is warranted to determine whether wetland topography and warm, shallow microhabitats within wetlands contribute to a population's ability to drastically reduce Bd prevalence prior to overwintering at ponds.


Assuntos
Quitridiomicetos , Micoses/veterinária , Rana clamitans/microbiologia , Estações do Ano , Animais , Larva/microbiologia , Micoses/microbiologia , Prevalência
4.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38854054

RESUMO

As epigenetic clocks have evolved from powerful estimators of chronological aging to predictors of mortality and disease risk, it begs the question of what role DNA methylation plays in the aging process. We hypothesize that while it has the potential to serve as an informative biomarker, DNA methylation could also be a key to understanding the biology entangled between aging, (de)differentiation, and epigenetic reprogramming. Here we use an unsupervised approach to analyze time associated DNA methylation from both in vivo and in vitro samples to measure an underlying signal that ties these phenomena together. We identify a methylation pattern shared across all three, as well as a signal that tracks aging in tissues but appears refractory to reprogramming, suggesting that aging and reprogramming may not be fully mirrored processes.

5.
J Comp Psychol ; 137(2): 102-115, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35980712

RESUMO

Probing for spatial cognitive processes in model rodent species has a long history in the psychological literature, with well-established protocols and paradigms successfully revealing the mechanisms underlying spatial learning and memory. There has also been much interest in examining the ecological and evolutionary context of spatial cognition, with a focus on how selection has molded spatial cognitive abilities in nonmodel species, how spatial cognitive traits vary across species, the neural mechanisms underlying spatial cognitive abilities, and the fitness outcomes of spatial cognition. Behavioral ecologists have been able to take advantage of paradigms from experimental psychology's rich history of spatial cognitive testing for use in nonmodel species. However, as the field advances, it is important to highlight noncognitive factors that can impact performance on spatial cognitive tasks (e.g., motivation to perform the task, switching navigational strategies, variation across protocols, ecological relevance of the task), as these factors may explain discrepancies in findings among some studies. This review highlights how these noncognitive factors can differentially modulate performance on spatial cognitive tests in different nonmodel species. Accounting for these factors when creating protocols and paradigms allows for a more nuanced approach with more explanatory power when probing for spatial cognitive abilities in nonmodel species. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Cognição , Aprendizagem Espacial , Motivação , Testes Neuropsicológicos
6.
Sci Rep ; 12(1): 8550, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595824

RESUMO

Some social settings such as households and workplaces, have been identified as high risk for SARS-CoV-2 transmission. Identifying and quantifying the importance of these settings is critical for designing interventions. A tightly-knit religious community in the UK experienced a very large COVID-19 epidemic in 2020, reaching 64.3% seroprevalence within 10 months, and we surveyed this community both for serological status and individual-level attendance at particular settings. Using these data, and a network model of people and places represented as a stochastic graph rewriting system, we estimated the relative contribution of transmission in households, schools and religious institutions to the epidemic, and the relative risk of infection in each of these settings. All congregate settings were important for transmission, with some such as primary schools and places of worship having a higher share of transmission than others. We found that the model needed a higher general-community transmission rate for women (3.3-fold), and lower susceptibility to infection in children to recreate the observed serological data. The precise share of transmission in each place was related to assumptions about the internal structure of those places. Identification of key settings of transmission can allow public health interventions to be targeted at these locations.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Criança , Feminino , Humanos , Judeus , Estudos Soroepidemiológicos , Reino Unido/epidemiologia
7.
Mucosal Immunol ; 14(3): 728-742, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33479479

RESUMO

Induction of memory CD8 T cells residing in peripheral tissues is of interest for T cell-based vaccines as these cells are located at mucosal and barrier sites and can immediately exert effector functions, thus providing protection in case of local pathogen encounter. Different memory CD8 T cell subsets patrol peripheral tissues, but it is unclear which subset is superior in providing protection upon secondary infections. We used influenza virus to induce predominantly tissue resident memory T cells or cytomegalovirus to elicit a large pool of effector-like memory cells in the lungs and determined their early protective capacity and mechanism of reactivation. Both memory CD8 T cell pools have unique characteristics with respect to their phenotype, localization, and maintenance. However, these distinct features do not translate into different capacities to control a respiratory vaccinia virus challenge in an antigen-specific manner, although differential activation mechanisms are utilized. While influenza-induced memory CD8 T cells respond to antigen by local proliferation, MCMV-induced memory CD8 T cells relocate from the vasculature into the tissue in an antigen-independent and partially chemokine-driven manner. Together these results bear relevance for the development of vaccines aimed at eliciting a protective memory CD8 T cell pool at mucosal sites.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Herpesviridae/imunologia , Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Pulmão/imunologia , Muromegalovirus/fisiologia , Infecções por Orthomyxoviridae/imunologia , Vaccinia virus/fisiologia , Vacínia/imunologia , Animais , Proliferação de Células , Células Cultivadas , Humanos , Memória Imunológica , Pulmão/virologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ativação Viral , Latência Viral
8.
Lancet Reg Health Eur ; 6: 100127, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34308409

RESUMO

BACKGROUND: Ethnic and religious minorities have been disproportionately affected by SARS-CoV-2 worldwide. The UK strictly-Orthodox Jewish community has been severely affected by the pandemic. This group shares characteristics with other ethnic minorities including larger family sizes, higher rates of household crowding and relative socioeconomic deprivation. We studied a UK strictly-Orthodox Jewish population to understand transmission of COVID-19 within this community. METHODS: We performed a household-focused cross-sectional SARS-CoV-2 serosurvey between late-October and early December 2020 prior to the third national lockdown. Randomly-selected households completed a standardised questionnaire and underwent serological testing with a multiplex assay for SARS-CoV-2 IgG antibodies. We report clinical illness and testing before the serosurvey, seroprevalence stratified by age and sex. We used random-effects models to identify factors associated with infection and antibody titres. FINDINGS: A total of 343 households, consisting of 1,759 individuals, were recruited. Serum was available for 1,242 participants. The overall seroprevalence for SARS-CoV-2 was 64.3% (95% CI 61.6-67.0%). The lowest seroprevalence was 27.6% in children under 5 years and rose to 73.8% in secondary school children and 74% in adults. Antibody titres were higher in symptomatic individuals and declined over time since reported COVID-19 symptoms, with the decline more marked for nucleocapsid titres. INTERPRETATION: In this tight-knit religious minority population in the UK, we report one of the highest SARS-CoV-2 seroprevalence levels in the world to date, which was markedly higher than the reported 10% seroprevalence in London at the time of the study. In the context of this high force of infection, all age groups experienced a high burden of infection. Actions to reduce the burden of disease in this and other minority populations are urgently required. FUNDING: This work was jointly funded by UKRI and NIHR [COV0335; MR/V027956/1], a donation from the LSHTM Alumni COVID-19 response fund, HDR UK, the MRC and the Wellcome Trust.

9.
J Vis Exp ; (119)2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28117775

RESUMO

Clinical research has leveraged a variety of paradigms to assess cognitive decline, commonly targeting spatial learning and memory abilities. However, interest in the cognitive processes of nonmodel species, typically within an ecological context, has also become an emerging field of study. In particular, interest in the cognitive processes in reptiles is growing although experimental studies on reptilian cognition are sparse. The few reptilian studies that have experimentally tested for spatial learning and memory have used rodent paradigms modified for use in reptiles. However, ecologically important aspects of the physiology and behavior of this taxonomic group must be taken into account when testing for spatially based cognition. Here, we describe modifications of the dry land Barnes maze and associated testing protocol that can improve performance when probing for spatial learning and memory ability in small squamate reptiles. The described paradigm and procedures were successfully used with male side-blotched lizards (Uta stansburiana), demonstrating that spatial learning and memory can be assessed in this taxonomic group with an ecologically relevant apparatus and protocol.


Assuntos
Lagartos/fisiologia , Memória/fisiologia , Aprendizagem Espacial/fisiologia , Animais , Comportamento Animal , Cognição , Lagartos/crescimento & desenvolvimento , Masculino
10.
Front Microbiol ; 8: 900, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28567036

RESUMO

In spite of there being a number of vaccines, influenza remains a significant global cause of morbidity and mortality. Understanding more about natural and vaccine induced immune protection against influenza infection would help to develop better vaccines. Virus specific IgG is a known correlate of protection, but other factors may help to reduce viral load or disease severity, for example IgA. In the current study we measured influenza specific responses in a controlled human infection model using influenza A/California/2009 (H1N1) as the challenge agent. Volunteers were pre-selected with low haemagglutination inhibition (HAI) titres in order to ensure a higher proportion of infection; this allowed us to explore the role of other immune correlates. In spite of HAI being uniformly low, there were variable levels of H1N1 specific IgG and IgA prior to infection. There was also a range of disease severity in volunteers allowing us to compare whether differences in systemic and local H1N1 specific IgG and IgA prior to infection affected disease outcome. H1N1 specific IgG level before challenge did not correlate with protection, probably due to the pre-screening for individuals with low HAI. However, the length of time infectious virus was recovered from the nose was reduced in patients with higher pre-existing H1N1 influenza specific nasal IgA or serum IgA. Therefore, IgA contributes to protection against influenza and should be targeted in vaccines.

11.
J Immunol Methods ; 449: 1-6, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28647455

RESUMO

We need greater understanding of the mechanisms underlying protection against influenza virus to develop more effective vaccines. To do this, we need better, more reproducible methods of sampling the nasal mucosa. The aim of the current study was to compare levels of influenza virus A subtype-specific IgA collected using three different methods of nasal sampling. Samples were collected from healthy adult volunteers before and after LAIV immunization by nasal wash, flocked swabs and Synthetic Absorptive Matrix (SAM) strips. Influenza A virus subtype-specific IgA levels were measured by haemagglutinin binding ELISA or haemagglutinin binding microarray and the functional response was assessed by microneutralization. Nasosorption using SAM strips lead to the recovery of a more concentrated sample of material, with a significantly higher level of total and influenza H1-specific IgA. However, an equivalent percentage of specific IgA was observed with all sampling methods when normalized to the total IgA. Responses measured using a recently developed antibody microarray platform, which allows evaluation of binding to multiple influenza strains simultaneously with small sample volumes, were compared to ELISA. There was a good correlation between ELISA and microarray values. Material recovered from SAM strips was weakly neutralizing when used in an in vitro assay, with a modest correlation between the level of IgA measured by ELISA and neutralization, but a greater correlation between microarray-measured IgA and neutralizing activity. In conclusion we have tested three different methods of nasal sampling and show that flocked swabs and novel SAM strips are appropriate alternatives to traditional nasal washes for assessment of mucosal influenza humoral immunity.


Assuntos
Anticorpos Antivirais/análise , Imunoglobulina A/análise , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Mucosa Nasal/imunologia , Manejo de Espécimes/métodos , Adulto , Anticorpos Antivirais/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Imunidade nas Mucosas , Imunoglobulina A/imunologia , Masculino , Líquido da Lavagem Nasal/imunologia , Mucosa Nasal/virologia , Análise Serial de Proteínas , Manejo de Espécimes/instrumentação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa